exam2 + remaining files of the semester

This commit is contained in:
Marcel 2022-01-08 23:53:49 +01:00
parent 5a31fc8f33
commit e4cf7b7910
32 changed files with 41546 additions and 1 deletions

3
.gitignore vendored
View File

@ -1,2 +1,3 @@
/.DS_Store
/.ipynb_checkpoints
/.ipynb_checkpoints
.DS_Store

2405
Exam1/Exam1_Solution.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,22 @@
using Printf
include("jlFiles/printmat.jl")
println("Three ways of doing the same thing")
fp = [1 2;
1.1 2.1]
x1 = fp*10 #easiest and fastest
printmat(x1)
x2 = map(i->fp[:,i]*10,1:2) #cumbersome
x2 = hcat(x2...)
printmat(x2)
x3 = zeros(size(fp)) #even more cumbersome
for i=1:size(fp,1),j=1:size(fp,2)
x3[i,j] = fp[i,j]*10
end
printmat(x3)

BIN
Exam2.zip Normal file

Binary file not shown.

1147
Exam2/Exam2.ipynb Normal file

File diff suppressed because one or more lines are too long

BIN
Exam2/Exam2_FakeResults.pdf Normal file

Binary file not shown.

246
Exam2/jlFiles/printmat.jl Normal file
View File

@ -0,0 +1,246 @@
#------------------------------------------------------------------------------
"""
printmat([fh::IO],x...;colNames=[],rowNames=[],
width=10,prec=3,NoPrinting=false,StringFmt="",cell00="")
Print all elements of a matrix (or several) with predefined formatting. It can also handle
OffsetArrays. StringFmt = "csv" prints using a csv format.
# Input
- `fh::IO`: (optional) file handle. If not supplied, prints to screen
- `x::Array(s)`: (of numbers, dates, strings, ...) to print
- `colNames::Array`: of strings with column headers
- `rowNames::Array`: of strings with row labels
- `width::Int`: (keyword) scalar, minimum width of printed cells
- `prec::Int`: (keyword) scalar, precision of printed cells
- `NoPrinting::Bool`: (keyword) bool, true: no printing, just return formatted string [false]
- `StringFmt::String`: (keyword) string, "", "csv"
- `cell00::String`: (keyword) string, for row 0, column 0
# Output
- str (if NoPrinting) string, (otherwise nothing)
# Examples
```
x = [11 12;21 22]
printmat(x)
```
```
x = [1 "ab"; Date(2018,10,7) 3.14]
printmat(x,width=20,colNames=["col 1","col 2"])
```
```
printmat([11,12],[21,22])
```
Can also call as
```
opt = Dict(:rowNames=>["1";"4"],:width=>10,:prec=>3,:NoPrinting=>false,:StringFmt=>"")
printmat(x;colNames=["a","b"],opt...) #notice ; and ...
```
(not all keywords are needed)
# Requires
- fmtNumPs
# Notice
- The prefixN and suffixN could potentially be made function inputs. This would allow
a fairly flexible way to format tables.
Paul.Soderlind@unisg.ch
"""
function printmat(fh::IO,x...;colNames=[],rowNames=[],
width=10,prec=3,NoPrinting=false,StringFmt="",cell00="")
isempty(x) && return nothing #do nothing is isempty(x)
typeTestQ = any(!=(eltype(x[1])),[eltype(z) for z in x]) #test if eltype(x[i]) differs
if typeTestQ #create matrix from tuple created by x...
x = hcat(Matrix{Any}(hcat(x[1])),x[2:end]...) #preserving types of x[i]
else
x = hcat(x...)
end
(m,n) = (size(x,1),size(x,2))
(length(rowNames) == 1 < m) && (rowNames = [string(rowNames[1],i) for i = 1:m]) #"ri"
(length(colNames) == 1 < n) && (colNames = [string(colNames[1],i) for i = 1:n]) #"ci"
if StringFmt == "csv"
(prefixN,suffixN) = (fill("",n),vcat(fill(",",n-1),"")) #prefix and suffix for column 1:n
(prefixC0,suffixC0) = ("",",") #prefix and suffix for column 0
else
(prefixN,suffixN) = (fill("",n),fill("",n))
(prefixC0,suffixC0) = ("","")
end
if length(rowNames) == 0 #width of column 0 (cell00 and rowNames)
col0Width = 0
else
col0Width = maximum(length,vcat(cell00,rowNames)) + length(prefixC0) + length(suffixC0)
end
colWidth = [width + length(prefixN[j]) + length(suffixN[j]) for j=1:n] #widths of column 1:n
iob = IOBuffer()
if !isempty(colNames) #print (cell00,colNames), if any
!isempty(cell00) ? txt0 = string(prefixC0,cell00,suffixC0) : txt0 = ""
print(iob,rpad(txt0,col0Width))
for j = 1:n #loop over columns
print(iob,lpad(string(prefixN[j],colNames[j],suffixN[j]),colWidth[j]))
end
print(iob,"\n")
end
#print rowNames and x
(i0,j0) = (1 - first(axes(x,1)),1 - first(axes(x,2))) #i+i0,j+j0 give traditional indices
for i in axes(x,1) #loop over rows
!isempty(rowNames) && print(iob,rpad(string(prefixC0,rowNames[i+i0],suffixC0),col0Width))
for j in axes(x,2) #loop over columns
print(iob,fmtNumPs(x[i,j],width,prec,"right",prefix=prefixN[j+j0],suffix=suffixN[j+j0]))
end
print(iob,"\n")
end
str = String(take!(iob))
if NoPrinting #no printing, just return str
return str
else #print, return nothing
print(fh,str,"\n")
return nothing
end
end
#when fh is not supplied: printing to screen
printmat(x...;colNames=[],rowNames=[],width=10,prec=3,NoPrinting=false,StringFmt="",cell00="") =
printmat(stdout::IO,x...;colNames,rowNames,width,prec,NoPrinting,StringFmt,cell00)
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
"""
printlnPs([fh::IO],z...;width=10,prec=3)
Subsitute for println, with predefined formatting.
# Input
- `fh::IO`: (optional) file handle. If not supplied, prints to screen
- `z::String`: string, numbers and arrays to print
Paul.Soderlind@unisg.ch
"""
function printlnPs(fh::IO,z...;width=10,prec=3)
for x in z #loop over inputs in z...
if isa(x,AbstractArray)
iob = IOBuffer()
for i = 1:length(x)
print(iob,fmtNumPs(x[i],width,prec,"right"))
end
print(fh,String(take!(iob)))
else
print(fh,fmtNumPs(x,width,prec,"right"))
end
end
print(fh,"\n")
end
#when fh is not supplied: printing to screen
printlnPs(z...;width=10,prec=3) = printlnPs(stdout::IO,z...;width,prec)
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
"""
fmtNumPs(z,width=10,prec=2,justify="right";prefix="",suffix="")
Create a formatted string of a float (eg, "%10.4f"), nothing (""),
while other values are passed through. Strings are right (or left) justified
and can optionally be given prefix and suffix (eg, ",")
# Notice
- With prec > 0 and isa(z,Integer), then the string is padded with 1+prec spaces
to align with the printing of floats with the same prec.
# Requires
- Printf (for 1.6-), fmtNumPsC (for < 1.6)
"""
function fmtNumPs(z,width=10,prec=2,justify="right";prefix="",suffix="")
isa(z,Bool) && (z = convert(Int,z)) #Bool -> Int
if isa(z,AbstractFloat) #example: 101.0234, prec=3
if VERSION < v"1.6-"
fmt = "%$(width).$(prec)f"
zRound = round(z,digits=prec)
strLR = fmtNumPsC(fmt,zRound) #C fallback solution
else
fmt = Printf.Format("%$(width).$(prec)f")
strLR = Printf.format(fmt,z)
end
elseif isa(z,Nothing)
strLR = ""
elseif isa(z,Integer) && prec > 0 #integer followed by (1+prec spaces)
strLR = string(z," "^(1+prec))
else #Int, String, Date, Missing, etc
strLR = string(z)
end
strLR = string(prefix,strLR,suffix)
if justify == "left" #justification
strLR = rpad(strLR,width+length(prefix)+length(suffix))
else
strLR = lpad(strLR,width+length(prefix)+length(suffix))
end
return strLR
end
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
"""
fmtNumPsC(fmt,z)
c fallback solution for formatting of floating point number. Used if VERSION < v"1.6-"
"""
function fmtNumPsC(fmt,z) #c fallback solution
if ismissing(z) || isnan(z) || isinf(z) #asprintf does not work for these cases
str = string(z)
else
strp = Ref{Ptr{Cchar}}(0)
len = ccall(:asprintf,Cint,(Ptr{Ptr{Cchar}},Cstring,Cdouble...),strp,fmt,z)
str = unsafe_string(strp[],len)
Libc.free(strp[])
end
return str
end
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
function printblue(x...)
foreach(z->printstyled(z,color=:blue,bold=true),x)
print("\n")
end
function printred(x...)
foreach(z->printstyled(z,color=:red,bold=true),x)
print("\n")
end
function printmagenta(x...)
foreach(z->printstyled(z,color=:magenta,bold=true),x)
print("\n")
end
function printyellow(x...)
foreach(z->printstyled(z,color=:yellow,bold=true),x)
print("\n")
end
#------------------------------------------------------------------------------

BIN
Problemsets/.DS_Store vendored

Binary file not shown.

View File

@ -0,0 +1,389 @@
date,Mkt-RF,SMB,HML,RF,Mom,ST_Rev,LT_Rev
197901,4.18,3.69,2.28,0.77,-1.26,5.49,-0.75
197902,-3.41,0.47,1.17,0.73,-1.08,1.28,0.94
197903,5.75,3.19,-0.67,0.81,2.91,1.38,-0.35
197904,0.05,2.18,1.06,0.8,0.81,-0.37,-0.4
197905,-2.18,0.34,1.62,0.82,-0.36,0.99,0.75
197906,3.88,1.17,1.42,0.81,0.84,1.2,-2.71
197907,0.73,1.31,1.75,0.77,-1.07,0.57,-2.02
197908,5.7,2.07,-1.53,0.77,-0.24,0.81,-1.74
197909,-0.69,-0.29,-0.91,0.83,5.33,-1.56,0.04
197910,-8.14,-3.33,-1.87,0.87,2.15,-1.96,1.52
197911,5.37,2.75,-3.34,0.99,7.95,1.37,-2.28
197912,1.87,4.24,-2.04,0.95,4.76,-1.93,-0.34
198001,5.76,1.68,1.78,0.8,7.47,-3.38,-0.85
198002,-0.79,-1.79,0.58,0.89,7.9,-4.94,-0.09
198003,-13.23,-6.64,-1.02,1.21,-9.61,8.38,2.61
198004,3.97,0.99,1.09,1.26,-0.43,1.36,-0.13
198005,5.2,2.13,0.38,0.81,-1.13,2.87,0.78
198006,3.16,1.69,-0.91,0.61,1.59,2.15,-2.92
198007,6.41,4.21,-6.27,0.53,0.36,2.93,-1.74
198008,1.72,3.91,-2.69,0.64,3.2,-0.99,-1.55
198009,2.2,0.87,-4.71,0.75,5.44,-1.44,-1.79
198010,1.06,2.45,-2.75,0.95,7.33,-1.99,-2.83
198011,9.54,-3.46,-8.52,0.96,15.21,-9.86,-7.79
198012,-4.75,-0.23,2.67,1.31,-6.63,6.36,3.43
198101,-5.05,3.02,6.88,1.04,-7.91,-2.29,7.51
198102,0.48,-0.29,1,1.07,-1.39,-2.22,2.65
198103,3.41,3.61,0.74,1.21,0.78,1.62,1.59
198104,-2.21,4.4,2.28,1.08,-0.96,-1.53,2.83
198105,0.21,2.05,-0.45,1.15,3.73,-3.74,1.55
198106,-2.37,-0.86,5.13,1.35,-5.9,4.53,1.01
198107,-1.55,-2.26,-0.53,1.24,-2.53,-0.58,-3.51
198108,-6.91,-1.93,4.78,1.28,-1.11,-0.67,1.27
198109,-7.62,-2.64,5.19,1.24,1.93,-1.11,5.23
198110,4.81,2.24,-4.36,1.21,4.06,4.62,-4.92
198111,3.51,-0.93,1.86,1.07,-0.26,2.58,0.62
198112,-3.68,1.2,0.72,0.87,1.32,1.63,1.4
198201,-3.42,-1.24,3.07,0.8,1.71,-1.22,6.42
198202,-6.03,0.5,6.03,0.92,4.94,-4.36,5.93
198203,-1.99,-0.22,3.86,0.98,2.98,-1.77,3.97
198204,3.2,1.46,-2.72,1.13,-0.41,1.62,-1.67
198205,-3.88,0.5,1.8,1.06,2.53,1.93,1.58
198206,-3.35,-0.39,1.57,0.96,4.99,0.16,1.94
198207,-3.1,0.89,0.23,1.05,4.47,-2.89,2.35
198208,11.14,-4.13,1.17,0.76,-3.52,1.1,-0.97
198209,1.17,2.94,0.34,0.51,4.18,4.3,-0.47
198210,11.27,2.34,-3.72,0.59,0.05,2.83,-0.95
198211,4.56,4.77,-1.93,0.63,5.89,-4.48,1.05
198212,0.78,-0.17,0.04,0.67,0.03,3.78,1.07
198301,3.5,2.66,-0.87,0.69,-1.67,3.17,0.06
198302,2.4,3.26,0.7,0.62,3.8,2.72,-0.46
198303,2.84,1.76,2.08,0.63,0.92,0.35,0.9
198304,6.71,0.53,0.58,0.71,1.8,-0.54,3.19
198305,0.63,6.12,-1.4,0.69,-1.48,2.76,-2.1
198306,3.11,0.92,-3.85,0.67,1.78,0.2,-0.91
198307,-3.9,1.51,5.65,0.74,-3.12,2.02,1.01
198308,-0.41,-4.3,5.46,0.76,-5.44,-0.61,0.09
198309,0.85,0.55,1.05,0.76,-0.11,2.33,0.82
198310,-3.56,-3.61,4.94,0.76,-4.56,-1.68,1.15
198311,2.26,2.03,-0.63,0.7,-0.11,4.88,-1.33
198312,-1.78,-0.29,1.64,0.73,0.79,1.9,1.36
198401,-2.06,-0.4,7.56,0.76,-2.52,0.67,4.24
198402,-4.62,-1.72,3.39,0.71,0.17,-2.02,0.22
198403,0.61,0.14,0.52,0.73,1.1,2.42,0.71
198404,-0.56,-1.2,1.28,0.81,2.08,1.54,-1.56
198405,-6.01,0.08,0.2,0.78,1.53,0.84,-0.22
198406,1.59,-0.27,-2.59,0.75,-0.7,0.94,-3.6
198407,-2.88,-2.28,0.28,0.82,2.93,-1.49,-1.63
198408,10.44,-0.22,-1.75,0.83,-5.74,7.28,-1.69
198409,-0.82,0.24,5.33,0.86,3.66,4.35,1.78
198410,-1.01,-1.17,0.46,1,3.23,-1.26,-1.79
198411,-1.8,-0.63,4.01,0.73,1.7,-0.66,1.02
198412,1.73,-0.57,-0.11,0.64,1.5,0.56,-3.1
198501,7.92,3.27,-5.35,0.65,-6.93,2.34,-1.93
198502,1.11,0.79,-0.23,0.58,1.82,2.42,-0.12
198503,-0.79,-1.12,3.98,0.62,1.69,-1.3,-0.69
198504,-0.94,0.18,3.72,0.72,3.05,-2.46,0.15
198505,4.92,-2.28,-0.91,0.66,3.97,-0.51,-4
198506,1.16,0.49,0.42,0.55,3.63,-0.63,-2.35
198507,-0.65,2.85,-1.63,0.62,-3.92,3.62,1.67
198508,-1.03,-0.37,2.2,0.55,1.79,1.82,0.11
198509,-4.58,-1.61,1.25,0.6,1.48,-1.81,-0.8
198510,3.79,-1.58,0.72,0.65,4.87,0.72,-2.46
198511,6.31,0.24,-2.87,0.61,-0.39,2.31,-2.39
198512,3.66,-0.46,-1.52,0.65,-0.13,-0.63,-3.13
198601,0.42,1.21,0.53,0.56,2.97,0.72,-2.83
198602,6.72,-0.59,-0.84,0.53,2.76,-1.64,-3.67
198603,4.79,-0.48,-0.44,0.6,2.45,-0.21,-2.24
198604,-1.31,2.82,-2.91,0.52,-0.5,2.83,-1.17
198605,4.59,-1.3,-0.11,0.49,2.03,0.97,-1.35
198606,0.9,-0.89,1.38,0.52,5.15,-2.36,-6.44
198607,-6.49,-3.43,4.71,0.52,1.8,-3.05,-4.05
198608,6.16,-4.17,3.53,0.46,-5.02,1.16,4.82
198609,-8.35,2.3,3.22,0.45,-5.86,-0.3,3.83
198610,4.47,-2.59,-1.48,0.46,2.7,3.55,0.64
198611,1.12,-1.96,-0.16,0.39,-0.31,0.66,0.12
198612,-3.13,0.07,0.36,0.49,0.37,0.56,0.53
198701,12.43,-1.73,-3.15,0.42,2.07,0.45,3.12
198702,4.36,3.45,-5.95,0.43,-2.16,-1.06,-0.16
198703,1.9,0.44,1.65,0.47,1.6,1.82,3.92
198704,-2.14,-1.69,-0.29,0.44,0.26,-1.89,3.92
198705,0.13,-0.56,0.17,0.38,-0.69,-0.28,2.22
198706,3.89,-2.1,1.13,0.48,-0.2,0.11,-1.42
198707,3.96,-0.68,0.67,0.46,2.69,-0.15,2.33
198708,3.24,-0.77,-0.94,0.47,-0.89,2.55,-3.05
198709,-2.53,0.62,0.28,0.45,0.61,-0.38,3.08
198710,-23.14,-8.41,4.17,0.6,-7.92,0.1,-6.26
198711,-7.58,2.61,3.18,0.35,-1.17,-0.77,-0.42
198712,6.64,0.18,-4.48,0.39,5.78,5.96,2.87
198801,4.2,-0.66,5.22,0.29,-7.63,7.9,-1.63
198802,4.71,3.34,-1.66,0.46,-1.54,4.35,1.53
198803,-2.1,6.15,0.77,0.44,0.64,-0.9,1.21
198804,0.64,0.96,1.73,0.46,2.25,0.33,0.45
198805,-0.47,-2.62,2.31,0.51,0.5,0.57,-0.13
198806,4.66,2.12,-1.14,0.49,-2.91,1.83,1.75
198807,-1.24,-0.19,2.28,0.51,0.64,3.4,-1.35
198808,-3.39,0.08,2.09,0.59,0.32,-1.95,-2.03
198809,3.1,-1.3,-0.74,0.62,0.24,-0.15,-1.95
198810,1.15,-2.94,1.66,0.61,1.32,-0.92,-0.12
198811,-2.21,-1.74,1.26,0.57,0.41,-0.67,-0.84
198812,1.48,1.93,-1.55,0.63,0.28,2.29,0.79
198901,6.06,-2.15,0.52,0.55,-0.14,1.12,2.81
198902,-2.25,2.74,0.87,0.61,0.87,1.06,0.9
198903,1.48,0.7,0.47,0.67,3.56,-0.87,0.15
198904,4.15,-0.53,-1.38,0.67,1.7,-0.72,-1.1
198905,3.14,-0.03,-0.84,0.79,1.54,-2.74,-1.7
198906,-1.2,-1.01,2.18,0.71,0.65,2.26,-0.71
198907,7.01,-3.98,-2.8,0.7,5.39,1.3,-1.8
198908,1.47,0.5,0.67,0.74,-0.14,1.89,0.17
198909,-0.8,0.34,-1.3,0.65,3.39,1.18,-2.83
198910,-3.61,-3.23,-0.98,0.68,1.43,-4.26,-3.55
198911,1.09,-1.26,-1.12,0.69,2.57,-1.77,-1.25
198912,1.22,-2.35,0.29,0.61,2.78,-2.54,-0.83
199001,-7.58,-1.25,0.87,0.57,-3.36,1.1,3.23
199002,0.92,1.15,0.66,0.57,-0.53,0.43,1.9
199003,1.77,1.5,-2.86,0.64,1.68,0.21,-0.17
199004,-3.52,-0.44,-2.48,0.69,2.47,-2.04,-1.12
199005,8.21,-2.48,-3.63,0.68,3.02,-0.44,0.93
199006,-1.05,1.37,-2.11,0.63,2.41,-0.17,-1.47
199007,-1.62,-3.18,-0.05,0.68,5.95,-0.56,-1.79
199008,-9.85,-3.57,1.49,0.66,1.79,-3.51,1.62
199009,-5.98,-3.63,0.67,0.6,5.52,-6,0.71
199010,-1.93,-5.56,0.26,0.68,6.73,-2.64,-3.5
199011,6,0.32,-2.96,0.57,-5.69,5.91,-0.64
199012,2.35,0.78,-1.49,0.6,0.01,-2.98,-2.39
199101,4.39,3.85,-1.73,0.52,-6.52,-2.04,6.15
199102,7.1,3.9,-0.58,0.48,-4.83,1.97,1.12
199103,2.45,3.92,-1.19,0.44,2.73,0.49,-0.23
199104,-0.2,0.53,1.43,0.53,-2.42,1.6,-1.19
199105,3.6,-0.31,-0.56,0.47,-0.12,0.35,1.4
199106,-4.82,0.06,1.23,0.42,0.4,2.14,-1.69
199107,4.19,-0.97,-1.29,0.49,4.34,2.06,0.82
199108,2.22,1.59,-0.8,0.46,1.59,-2.92,-0.43
199109,-1.56,1.68,-1.06,0.46,1.74,-0.81,-0.82
199110,1.36,0.85,-0.39,0.42,3.21,-1.28,2.25
199111,-4.12,-0.55,-1.77,0.39,1.26,-0.4,-2.67
199112,10.3,-2.26,-4.02,0.38,8.3,1.02,-0.85
199201,-0.46,8.43,4.63,0.34,-2.47,5.29,9.48
199202,1.06,0.87,6.37,0.28,-0.66,-2.69,5.41
199203,-2.71,-1.08,3.72,0.34,-0.35,-1.09,1.41
199204,1.02,-6.08,4.33,0.32,-2.6,-3.37,0.71
199205,0.36,0.42,1.17,0.28,0.11,-0.18,-0.47
199206,-2.25,-3.07,3.32,0.32,-0.61,0.86,1.32
199207,3.68,-0.39,-0.48,0.31,1.43,2.05,-1.26
199208,-2.34,-0.11,-1.09,0.26,-0.51,-1.57,-4.1
199209,0.98,0.58,-0.2,0.26,1.44,-1.12,-0.02
199210,0.87,2.07,-2.05,0.23,2.74,-0.22,-1.06
199211,3.79,3.63,-1.53,0.23,-0.32,-1.07,0.27
199212,1.5,1.63,2.53,0.28,4.47,1.21,0.8
199301,1.03,2.03,5.83,0.23,4.82,-0.52,5.54
199302,0.32,-3.36,6.5,0.22,3.11,-1.41,4.23
199303,2.26,0.23,1.23,0.25,3.74,-0.92,1.74
199304,-2.78,-0.64,2.65,0.24,0.33,-1.77,2.46
199305,2.74,1.97,-3.45,0.22,0.28,1.45,1.29
199306,0.29,-0.31,2.61,0.25,4.59,2.25,1.64
199307,-0.32,0.95,3.24,0.24,3.24,-2.7,0.99
199308,3.7,0.22,-0.4,0.25,2.58,1.3,1.23
199309,-0.2,3.08,-0.45,0.26,3.31,0.67,0.5
199310,1.59,1.45,-1.59,0.22,-2.7,1.96,1.78
199311,-2.01,-1.41,-0.31,0.25,-4.71,-1.37,1.49
199312,1.72,1.24,0.6,0.23,2.37,1.15,0.48
199401,2.9,0.11,2.15,0.25,0.09,1.75,3.78
199402,-2.63,2.72,-1.37,0.21,-0.27,0.42,-0.18
199403,-4.85,-0.9,1.29,0.27,-1.31,0.13,0.54
199404,0.68,-0.88,1.66,0.27,0.39,-0.35,0.17
199405,0.62,-2.05,0.12,0.32,-2.22,0.07,1.64
199406,-3.1,-0.49,1.71,0.31,-0.83,0.18,0.46
199407,2.78,-1.78,0.98,0.28,0.18,1.4,0.5
199408,3.89,1.45,-3.47,0.37,1.54,1.47,2.35
199409,-2.21,2.7,-1.83,0.37,1.29,-0.74,1.71
199410,1.07,-2.21,-2.35,0.38,1.48,-0.25,0.54
199411,-4.09,-0.16,-0.07,0.37,-0.19,-2.1,-1.63
199412,0.82,0.04,0.22,0.44,3.51,0.82,0.1
199501,1.62,-2.95,1.67,0.42,-1.82,4.05,-0.65
199502,3.56,-0.33,0.37,0.4,-0.33,2.38,-1.01
199503,2.24,-0.35,-2.04,0.46,0.38,-0.13,1.11
199504,2.06,-0.41,1.73,0.44,1.85,-0.58,0.36
199505,2.86,-2.24,1.97,0.54,-0.43,-0.44,-1.13
199506,2.65,3.07,-2.99,0.47,2.92,1.21,-1.85
199507,3.63,2.22,-2.15,0.45,2.57,-2.24,-0.97
199508,0.46,1.84,1.89,0.47,-0.02,1.32,-1.14
199509,3.21,-2.02,-0.92,0.43,2.63,-0.86,-1.01
199510,-1.6,-3.99,-0.08,0.47,4.14,-1.05,0.51
199511,3.85,-0.81,0.34,0.42,-0.6,0.56,0.55
199512,1.03,0.42,1.41,0.49,2.56,-0.95,3.96
199601,2.38,-2.44,0.36,0.43,0.55,1.08,1.34
199602,1.24,2.06,-2.32,0.39,0.58,2.27,-1.39
199603,0.7,1.31,1.23,0.39,-1.89,-0.08,-0.24
199604,2.09,4.89,-3.98,0.46,-0.93,0.7,-0.78
199605,2.26,3.22,-1.38,0.42,1.55,-1.08,1.16
199606,-1.23,-3.68,1.93,0.4,0.95,-0.22,-0.13
199607,-5.83,-3.57,4.39,0.45,-0.14,-2.48,0
199608,2.84,2.31,-0.59,0.41,-0.12,2.55,-1.47
199609,4.86,-0.82,-3.83,0.44,2.7,0.54,-2.12
199610,0.95,-4.11,4.81,0.42,3.82,-1.1,0.06
199611,6.15,-3.6,0.21,0.41,-2.39,0.17,-2.49
199612,-1.6,3.15,0.94,0.46,0.6,0.54,-0.57
199701,4.9,-1.51,-2.3,0.45,1.95,2.71,-1.58
199702,-0.5,-2.57,4.72,0.39,-2.02,1.27,0.84
199703,-4.92,-0.3,3.88,0.43,0.98,0.89,2.11
199704,3.81,-5.14,-1,0.43,4.81,2.39,-4.09
199705,6.67,4.79,-4.35,0.49,-5.2,2.83,-2.18
199706,4.04,1.52,0.7,0.37,2.67,0.81,0.19
199707,7.22,-2.42,-0.38,0.43,3.84,3.81,-1.16
199708,-4.04,7.48,1.03,0.41,-2.53,-0.07,3.18
199709,5.41,2.68,-0.28,0.44,1.46,1.68,-0.4
199710,-3.86,-0.81,2.31,0.42,-0.44,-0.97,0.35
199711,2.65,-5.05,1.03,0.39,0.29,-2.01,1.01
199712,1.3,-2.34,3.82,0.48,3.84,-3.05,0.12
199801,0.02,-1.01,-1.82,0.43,0.08,4.98,-1.11
199802,6.94,0.21,-0.72,0.39,-1.1,1.96,-1.18
199803,4.74,-1.18,1.67,0.39,2.14,1.84,2.3
199804,0.66,0.46,0.31,0.43,0.78,1.72,-0.93
199805,-2.97,-3.58,4.27,0.4,1.86,0.7,1.49
199806,2.78,-3.28,-1.84,0.41,7.26,-1.48,-0.75
199807,-2.74,-4.88,-1.08,0.4,3.69,-1.99,0.46
199808,-16.21,-5.7,5.14,0.43,1.91,-2.66,4.47
199809,5.92,-0.16,-3.96,0.46,-0.61,2.82,0.24
199810,7.12,-3.19,-2.71,0.32,-5.36,9.86,-4.23
199811,5.89,1.12,-3.29,0.31,1.18,1.22,-0.38
199812,5.93,-0.27,-4.8,0.38,9.03,-1.63,-1
199901,3.5,0.67,-5.61,0.35,3.02,-2.28,1.09
199902,-4.16,-5.68,1.71,0.35,-0.13,2.34,0.37
199903,3.36,-3.89,-2.88,0.43,-1.36,0.21,-1.09
199904,4.54,3.37,2.45,0.37,-9.14,2.36,5.14
199905,-2.41,3.69,2.69,0.34,-5.25,1.12,3.39
199906,4.68,3.37,-4.3,0.4,4.96,1.58,0.36
199907,-3.45,2.23,0.54,0.38,1.6,1.4,1.93
199908,-1.39,-1.24,-0.99,0.39,3.06,-3.51,-1.55
199909,-2.67,3.25,-3.08,0.39,6.49,-0.82,0.23
199910,5.82,-6.78,-3.26,0.39,5.48,-1.18,-2.76
199911,3.32,7.66,-7.99,0.36,5.57,0.09,5.14
199912,7.94,6.82,-9.19,0.44,13.2,-14.05,5.66
200001,-4.37,4.39,0.23,0.41,1.9,2.71,1.87
200002,2.75,22.06,-12.87,0.43,18.4,-13.35,7.59
200003,4.88,-16.62,7.91,0.47,-6.85,10.08,-5.17
200004,-6.41,-7.64,9.26,0.46,-8.47,-1.95,0.35
200005,-4.4,-4.66,3.8,0.5,-9.1,-8.73,-1.71
200006,4.76,13.74,-9.92,0.4,16.55,12.34,2.36
200007,-2.19,-2.79,8.45,0.48,-0.08,6.48,-3.27
200008,7.09,-0.9,-1.29,0.5,5.77,0.62,1.04
200009,-5.62,-1.84,6.87,0.51,2.18,2.49,-2.64
200010,-3.02,-3.63,4.8,0.56,-4.7,-4.74,-1.1
200011,-10.76,-3.07,12.39,0.51,-2.49,-14.52,0.35
200012,1.54,1.59,6.13,0.5,6.83,-6.63,2.91
200101,3.41,6.98,-5.67,0.54,-25.01,16.29,-2.61
200102,-10.32,-1.14,13.88,0.39,12.56,12.34,11
200103,-7.47,0.53,6.37,0.44,8.4,-7.67,3.9
200104,7.99,0.28,-4.39,0.39,-8.12,9.97,-3.79
200105,0.74,3.01,2.82,0.32,2.13,3.67,3.85
200106,-2.03,6.39,-2.11,0.28,0.3,0.46,2.08
200107,-2.13,-4.18,5.61,0.3,5.58,1.07,2.8
200108,-6.21,2.18,3.32,0.31,5.61,-3.96,5.92
200109,-9.43,-6.53,1.63,0.28,11.54,-4.9,0.05
200110,2.56,6.83,-6.99,0.22,-8.42,14.85,-1.66
200111,7.71,0.39,0.82,0.17,-8.62,-3.11,0.24
200112,1.64,5.12,0.39,0.15,0.01,1.68,1.26
200201,-1.74,1.15,3.46,0.14,3.73,1.59,3.52
200202,-2.3,-1.67,3.92,0.13,6.81,-0.11,4.09
200203,4.34,4.34,1.14,0.13,-1.68,2.85,2.11
200204,-5.11,5.84,4.21,0.15,7.92,2.08,6.12
200205,-1.19,-3.68,2.46,0.14,3.05,-2.7,2.4
200206,-7.16,3.55,1.47,0.13,6.19,-3.38,2.15
200207,-8.26,-5.16,-3.65,0.15,3.4,1.48,-2.94
200208,0.66,-2.19,2.17,0.14,1.73,1.39,-0.59
200209,-10.14,2.69,1.16,0.14,9.14,-1.8,-0.59
200210,7.35,-3.01,-6.51,0.14,-5.49,7.53,-0.38
200211,6.01,3.18,-1.54,0.12,-16.31,0.27,4.05
200212,-5.44,-0.52,3.86,0.11,9.65,10.58,2.26
200301,-2.44,1.4,-0.9,0.1,1.56,0.25,0.41
200302,-1.63,-0.27,-1.46,0.09,1.22,-0.8,-1.9
200303,0.93,0.83,-1.73,0.1,1.51,-0.22,-2.66
200304,8.18,1.11,-0.02,0.1,-9.44,3.17,-0.92
200305,6.26,4.69,0.16,0.09,-10.77,-1.44,3.47
200306,1.53,1.48,0.66,0.1,-0.97,-0.18,1.38
200307,2.24,5.62,-2.08,0.07,-0.29,2.59,0.37
200308,2.43,2.65,1.79,0.07,-0.54,-1.47,-0.35
200309,-0.99,0.57,0.92,0.08,-0.07,4.59,1.09
200310,5.96,2.87,1.84,0.07,3.88,2.04,2.02
200311,1.59,2.2,1.46,0.07,1.59,-1.44,1.93
200312,4.47,-2.78,2.64,0.08,-5.69,1.7,2.06
200401,2.23,2.61,1.66,0.07,2.58,2.24,1.91
200402,1.49,-1.15,0.34,0.06,-1.13,1.45,-2.95
200403,-1.16,1.87,-0.01,0.09,0.19,-2.17,-1.7
200404,-2.5,-2.56,-1.7,0.08,-5.38,-0.22,-2.36
200405,1.35,-0.15,-0.26,0.06,1.65,2.27,0.89
200406,2.08,2.28,1.68,0.08,2.08,0.31,1.79
200407,-3.87,-3.82,4.39,0.1,-2.31,-1.37,-2.51
200408,0.16,-1.54,1.12,0.11,-1.52,-2.41,-2.77
200409,1.94,2.85,0.34,0.11,5.26,3.05,-1.25
200410,1.67,0.42,-0.89,0.11,-1.5,0.14,0.98
200411,4.67,4.12,1.91,0.15,3.22,1.46,-1.16
200412,3.36,0.19,-0.35,0.16,-2.83,0.92,0.87
200501,-2.82,-1.62,2.49,0.16,3.12,1.57,-2.9
200502,2.11,-0.75,2.78,0.16,3.24,-2.33,-1.49
200503,-1.9,-1.3,1.65,0.21,0.92,0.16,-0.72
200504,-2.73,-3.96,-0.48,0.21,-0.83,-1.82,-1.48
200505,3.56,2.95,-1.17,0.24,0.43,3.18,0.48
200506,0.92,2.56,2.75,0.23,2.06,0.11,-1.49
200507,4.09,2.76,-0.46,0.24,0.04,-0.17,0.99
200508,-0.89,-0.89,1.42,0.3,2.21,-1.46,0.35
200509,0.77,-0.63,1.17,0.29,3.47,-3.7,-0.05
200510,-2.35,-1.04,-0.7,0.27,-1.29,1.56,-1.03
200511,3.73,1,-1.81,0.31,0.37,0.15,0.28
200512,0.03,-0.48,0.48,0.32,0.76,1.94,-0.86
200601,3.65,5.39,1.14,0.35,2.75,-1.09,1.16
200602,-0.5,-0.36,-0.83,0.34,-1.8,3.3,1.26
200603,1.54,3.54,-0.07,0.37,1.23,0.06,0.44
200604,0.94,-1.23,3.08,0.36,0.66,-0.34,-0.42
200605,-3.53,-2.99,2.78,0.43,-3.72,0.02,-0.16
200606,-0.44,-0.49,1.5,0.4,1.48,-0.55,-1.11
200607,-0.59,-3.94,3.3,0.4,-2.18,0.25,1.37
200608,2.09,0.81,-1.73,0.42,-3.46,1.74,2.92
200609,1.53,-1.21,-0.43,0.41,-0.94,0.74,1.65
200610,3.3,1.65,0.48,0.41,-0.23,-0.21,-0.46
200611,1.95,0.73,0.51,0.42,-1.01,-0.95,-1.93
200612,0.68,-0.89,2.54,0.4,0.83,2.38,1.93
200701,1.5,0.06,-0.1,0.44,0.26,1.07,-0.68
200702,-1.78,1.43,0.24,0.38,-1.32,0.3,-0.64
200703,0.87,-0.23,0.43,0.43,2.49,-2.02,-1.18
200704,3.55,-2.09,-0.96,0.44,-0.17,-0.28,0.28
200705,3.48,-0.06,-0.09,0.41,-0.32,-1.09,-2.48
200706,-1.87,0.67,-1.03,0.4,0.25,-0.84,-0.29
200707,-3.57,-2.7,-2.93,0.4,2.79,-3.35,-2.06
200708,0.75,-0.14,-2.37,0.42,0.11,-2.57,-0.24
200709,3.77,-2.47,-2.13,0.32,4.61,0.31,-2.78
200710,2.26,0.09,-1.92,0.32,4.89,-3.92,-1.58
200711,-5.27,-2.73,-1.02,0.34,0.89,-1.73,0.45
200712,-0.7,0.07,-0.05,0.27,6.51,-2.09,-2.28
200801,-6.44,-0.76,3.01,0.21,-7.84,6.97,1.76
200802,-2.33,-0.55,0.05,0.13,6.14,5.05,-2.18
200803,-1.21,0.86,0.17,0.17,4.14,-0.31,2.73
200804,4.94,-1.55,0.07,0.18,-0.21,3.13,-4.53
200805,2.21,2.84,-0.26,0.18,3.2,-2.31,-4.52
200806,-8.03,1.05,-1.06,0.17,12.52,-7.09,-3.18
200807,-1.47,3.74,3.59,0.15,-5.15,8.21,7.84
200808,0.99,3.79,1.48,0.13,-3.81,-0.63,1.06
200809,-9.97,-0.23,4.42,0.15,0.39,-3.74,5.8
200810,-18.55,-2.17,-3.07,0.08,7.81,-9.47,2.45
200811,-8.56,-3.57,-4.99,0.03,7.18,-10.22,-2.4
200812,2.06,3.99,-1.18,0.09,-5.03,5.3,0.3
200901,-7.75,-0.9,-9.93,0,-1.92,0.49,-7.12
200902,-10.12,-0.41,-6.75,0.01,4.25,-6.69,1.15
200903,8.75,0.75,2.57,0.02,-11.51,3.35,3.92
200904,11.04,5.16,5.68,0.01,-34.75,-6.94,-0.35
200905,6.73,-2.64,0.45,0,-12.49,-2.82,-1.97
200906,-0.28,2.65,-2.45,0.01,5.37,5.07,1.32
200907,8.23,2.47,4.82,0.01,-5.51,4.39,5.04
200908,3.18,-0.56,7.68,0.01,-8.87,-2.1,5.48
200909,4.52,2.33,1.47,0.01,-4.97,1.23,-1.78
200910,-2.84,-4.28,-4.37,0,2.65,2.12,-4.76
200911,5.74,-2.84,0.13,0,0.41,0.38,1.44
200912,2.91,5.89,0.72,0.01,2.94,1.57,0.7
201001,-3.71,0.43,0.57,0,-5.34,3.66,1.64
201002,3.53,1.39,2.75,0,3.61,1.83,2.58
201003,6.44,1.57,2.01,0.01,3.72,0.87,4.3
201004,2.02,5.01,3.14,0,3.2,-1.81,4.8
201005,-8,-0.01,-2.36,0.01,-0.26,0.55,-3.03
201006,-5.21,-2.08,-4.31,0.01,-2.88,-4.88,-5.34
201007,7.1,0.13,0.23,0.01,1.95,4.05,0.65
201008,-4.4,-2.91,-1.71,0.01,-0.12,1.06,-3.82
201009,9.24,3.96,-3.05,0.01,1.35,3.2,1.97
201010,3.88,0.94,-2.21,0.01,1.59,-1.37,-2.23
201011,0.56,3.78,-0.66,0.01,2.5,-0.91,-0.73
201012,6.77,0.78,3.53,0.01,-3.18,2.34,4.8
201101,2.01,-2.46,0.96,0.01,-0.22,0.02,1.03
201102,3.85,1.79,1.38,0.01,1.99,-0.99,1.29
201103,0.28,2.73,-1.31,0.01,3.55,-0.89,-1.91
201104,2.82,-0.23,-2.31,0,0.07,-1,-2.15
1 date Mkt-RF SMB HML RF Mom ST_Rev LT_Rev
2 197901 4.18 3.69 2.28 0.77 -1.26 5.49 -0.75
3 197902 -3.41 0.47 1.17 0.73 -1.08 1.28 0.94
4 197903 5.75 3.19 -0.67 0.81 2.91 1.38 -0.35
5 197904 0.05 2.18 1.06 0.8 0.81 -0.37 -0.4
6 197905 -2.18 0.34 1.62 0.82 -0.36 0.99 0.75
7 197906 3.88 1.17 1.42 0.81 0.84 1.2 -2.71
8 197907 0.73 1.31 1.75 0.77 -1.07 0.57 -2.02
9 197908 5.7 2.07 -1.53 0.77 -0.24 0.81 -1.74
10 197909 -0.69 -0.29 -0.91 0.83 5.33 -1.56 0.04
11 197910 -8.14 -3.33 -1.87 0.87 2.15 -1.96 1.52
12 197911 5.37 2.75 -3.34 0.99 7.95 1.37 -2.28
13 197912 1.87 4.24 -2.04 0.95 4.76 -1.93 -0.34
14 198001 5.76 1.68 1.78 0.8 7.47 -3.38 -0.85
15 198002 -0.79 -1.79 0.58 0.89 7.9 -4.94 -0.09
16 198003 -13.23 -6.64 -1.02 1.21 -9.61 8.38 2.61
17 198004 3.97 0.99 1.09 1.26 -0.43 1.36 -0.13
18 198005 5.2 2.13 0.38 0.81 -1.13 2.87 0.78
19 198006 3.16 1.69 -0.91 0.61 1.59 2.15 -2.92
20 198007 6.41 4.21 -6.27 0.53 0.36 2.93 -1.74
21 198008 1.72 3.91 -2.69 0.64 3.2 -0.99 -1.55
22 198009 2.2 0.87 -4.71 0.75 5.44 -1.44 -1.79
23 198010 1.06 2.45 -2.75 0.95 7.33 -1.99 -2.83
24 198011 9.54 -3.46 -8.52 0.96 15.21 -9.86 -7.79
25 198012 -4.75 -0.23 2.67 1.31 -6.63 6.36 3.43
26 198101 -5.05 3.02 6.88 1.04 -7.91 -2.29 7.51
27 198102 0.48 -0.29 1 1.07 -1.39 -2.22 2.65
28 198103 3.41 3.61 0.74 1.21 0.78 1.62 1.59
29 198104 -2.21 4.4 2.28 1.08 -0.96 -1.53 2.83
30 198105 0.21 2.05 -0.45 1.15 3.73 -3.74 1.55
31 198106 -2.37 -0.86 5.13 1.35 -5.9 4.53 1.01
32 198107 -1.55 -2.26 -0.53 1.24 -2.53 -0.58 -3.51
33 198108 -6.91 -1.93 4.78 1.28 -1.11 -0.67 1.27
34 198109 -7.62 -2.64 5.19 1.24 1.93 -1.11 5.23
35 198110 4.81 2.24 -4.36 1.21 4.06 4.62 -4.92
36 198111 3.51 -0.93 1.86 1.07 -0.26 2.58 0.62
37 198112 -3.68 1.2 0.72 0.87 1.32 1.63 1.4
38 198201 -3.42 -1.24 3.07 0.8 1.71 -1.22 6.42
39 198202 -6.03 0.5 6.03 0.92 4.94 -4.36 5.93
40 198203 -1.99 -0.22 3.86 0.98 2.98 -1.77 3.97
41 198204 3.2 1.46 -2.72 1.13 -0.41 1.62 -1.67
42 198205 -3.88 0.5 1.8 1.06 2.53 1.93 1.58
43 198206 -3.35 -0.39 1.57 0.96 4.99 0.16 1.94
44 198207 -3.1 0.89 0.23 1.05 4.47 -2.89 2.35
45 198208 11.14 -4.13 1.17 0.76 -3.52 1.1 -0.97
46 198209 1.17 2.94 0.34 0.51 4.18 4.3 -0.47
47 198210 11.27 2.34 -3.72 0.59 0.05 2.83 -0.95
48 198211 4.56 4.77 -1.93 0.63 5.89 -4.48 1.05
49 198212 0.78 -0.17 0.04 0.67 0.03 3.78 1.07
50 198301 3.5 2.66 -0.87 0.69 -1.67 3.17 0.06
51 198302 2.4 3.26 0.7 0.62 3.8 2.72 -0.46
52 198303 2.84 1.76 2.08 0.63 0.92 0.35 0.9
53 198304 6.71 0.53 0.58 0.71 1.8 -0.54 3.19
54 198305 0.63 6.12 -1.4 0.69 -1.48 2.76 -2.1
55 198306 3.11 0.92 -3.85 0.67 1.78 0.2 -0.91
56 198307 -3.9 1.51 5.65 0.74 -3.12 2.02 1.01
57 198308 -0.41 -4.3 5.46 0.76 -5.44 -0.61 0.09
58 198309 0.85 0.55 1.05 0.76 -0.11 2.33 0.82
59 198310 -3.56 -3.61 4.94 0.76 -4.56 -1.68 1.15
60 198311 2.26 2.03 -0.63 0.7 -0.11 4.88 -1.33
61 198312 -1.78 -0.29 1.64 0.73 0.79 1.9 1.36
62 198401 -2.06 -0.4 7.56 0.76 -2.52 0.67 4.24
63 198402 -4.62 -1.72 3.39 0.71 0.17 -2.02 0.22
64 198403 0.61 0.14 0.52 0.73 1.1 2.42 0.71
65 198404 -0.56 -1.2 1.28 0.81 2.08 1.54 -1.56
66 198405 -6.01 0.08 0.2 0.78 1.53 0.84 -0.22
67 198406 1.59 -0.27 -2.59 0.75 -0.7 0.94 -3.6
68 198407 -2.88 -2.28 0.28 0.82 2.93 -1.49 -1.63
69 198408 10.44 -0.22 -1.75 0.83 -5.74 7.28 -1.69
70 198409 -0.82 0.24 5.33 0.86 3.66 4.35 1.78
71 198410 -1.01 -1.17 0.46 1 3.23 -1.26 -1.79
72 198411 -1.8 -0.63 4.01 0.73 1.7 -0.66 1.02
73 198412 1.73 -0.57 -0.11 0.64 1.5 0.56 -3.1
74 198501 7.92 3.27 -5.35 0.65 -6.93 2.34 -1.93
75 198502 1.11 0.79 -0.23 0.58 1.82 2.42 -0.12
76 198503 -0.79 -1.12 3.98 0.62 1.69 -1.3 -0.69
77 198504 -0.94 0.18 3.72 0.72 3.05 -2.46 0.15
78 198505 4.92 -2.28 -0.91 0.66 3.97 -0.51 -4
79 198506 1.16 0.49 0.42 0.55 3.63 -0.63 -2.35
80 198507 -0.65 2.85 -1.63 0.62 -3.92 3.62 1.67
81 198508 -1.03 -0.37 2.2 0.55 1.79 1.82 0.11
82 198509 -4.58 -1.61 1.25 0.6 1.48 -1.81 -0.8
83 198510 3.79 -1.58 0.72 0.65 4.87 0.72 -2.46
84 198511 6.31 0.24 -2.87 0.61 -0.39 2.31 -2.39
85 198512 3.66 -0.46 -1.52 0.65 -0.13 -0.63 -3.13
86 198601 0.42 1.21 0.53 0.56 2.97 0.72 -2.83
87 198602 6.72 -0.59 -0.84 0.53 2.76 -1.64 -3.67
88 198603 4.79 -0.48 -0.44 0.6 2.45 -0.21 -2.24
89 198604 -1.31 2.82 -2.91 0.52 -0.5 2.83 -1.17
90 198605 4.59 -1.3 -0.11 0.49 2.03 0.97 -1.35
91 198606 0.9 -0.89 1.38 0.52 5.15 -2.36 -6.44
92 198607 -6.49 -3.43 4.71 0.52 1.8 -3.05 -4.05
93 198608 6.16 -4.17 3.53 0.46 -5.02 1.16 4.82
94 198609 -8.35 2.3 3.22 0.45 -5.86 -0.3 3.83
95 198610 4.47 -2.59 -1.48 0.46 2.7 3.55 0.64
96 198611 1.12 -1.96 -0.16 0.39 -0.31 0.66 0.12
97 198612 -3.13 0.07 0.36 0.49 0.37 0.56 0.53
98 198701 12.43 -1.73 -3.15 0.42 2.07 0.45 3.12
99 198702 4.36 3.45 -5.95 0.43 -2.16 -1.06 -0.16
100 198703 1.9 0.44 1.65 0.47 1.6 1.82 3.92
101 198704 -2.14 -1.69 -0.29 0.44 0.26 -1.89 3.92
102 198705 0.13 -0.56 0.17 0.38 -0.69 -0.28 2.22
103 198706 3.89 -2.1 1.13 0.48 -0.2 0.11 -1.42
104 198707 3.96 -0.68 0.67 0.46 2.69 -0.15 2.33
105 198708 3.24 -0.77 -0.94 0.47 -0.89 2.55 -3.05
106 198709 -2.53 0.62 0.28 0.45 0.61 -0.38 3.08
107 198710 -23.14 -8.41 4.17 0.6 -7.92 0.1 -6.26
108 198711 -7.58 2.61 3.18 0.35 -1.17 -0.77 -0.42
109 198712 6.64 0.18 -4.48 0.39 5.78 5.96 2.87
110 198801 4.2 -0.66 5.22 0.29 -7.63 7.9 -1.63
111 198802 4.71 3.34 -1.66 0.46 -1.54 4.35 1.53
112 198803 -2.1 6.15 0.77 0.44 0.64 -0.9 1.21
113 198804 0.64 0.96 1.73 0.46 2.25 0.33 0.45
114 198805 -0.47 -2.62 2.31 0.51 0.5 0.57 -0.13
115 198806 4.66 2.12 -1.14 0.49 -2.91 1.83 1.75
116 198807 -1.24 -0.19 2.28 0.51 0.64 3.4 -1.35
117 198808 -3.39 0.08 2.09 0.59 0.32 -1.95 -2.03
118 198809 3.1 -1.3 -0.74 0.62 0.24 -0.15 -1.95
119 198810 1.15 -2.94 1.66 0.61 1.32 -0.92 -0.12
120 198811 -2.21 -1.74 1.26 0.57 0.41 -0.67 -0.84
121 198812 1.48 1.93 -1.55 0.63 0.28 2.29 0.79
122 198901 6.06 -2.15 0.52 0.55 -0.14 1.12 2.81
123 198902 -2.25 2.74 0.87 0.61 0.87 1.06 0.9
124 198903 1.48 0.7 0.47 0.67 3.56 -0.87 0.15
125 198904 4.15 -0.53 -1.38 0.67 1.7 -0.72 -1.1
126 198905 3.14 -0.03 -0.84 0.79 1.54 -2.74 -1.7
127 198906 -1.2 -1.01 2.18 0.71 0.65 2.26 -0.71
128 198907 7.01 -3.98 -2.8 0.7 5.39 1.3 -1.8
129 198908 1.47 0.5 0.67 0.74 -0.14 1.89 0.17
130 198909 -0.8 0.34 -1.3 0.65 3.39 1.18 -2.83
131 198910 -3.61 -3.23 -0.98 0.68 1.43 -4.26 -3.55
132 198911 1.09 -1.26 -1.12 0.69 2.57 -1.77 -1.25
133 198912 1.22 -2.35 0.29 0.61 2.78 -2.54 -0.83
134 199001 -7.58 -1.25 0.87 0.57 -3.36 1.1 3.23
135 199002 0.92 1.15 0.66 0.57 -0.53 0.43 1.9
136 199003 1.77 1.5 -2.86 0.64 1.68 0.21 -0.17
137 199004 -3.52 -0.44 -2.48 0.69 2.47 -2.04 -1.12
138 199005 8.21 -2.48 -3.63 0.68 3.02 -0.44 0.93
139 199006 -1.05 1.37 -2.11 0.63 2.41 -0.17 -1.47
140 199007 -1.62 -3.18 -0.05 0.68 5.95 -0.56 -1.79
141 199008 -9.85 -3.57 1.49 0.66 1.79 -3.51 1.62
142 199009 -5.98 -3.63 0.67 0.6 5.52 -6 0.71
143 199010 -1.93 -5.56 0.26 0.68 6.73 -2.64 -3.5
144 199011 6 0.32 -2.96 0.57 -5.69 5.91 -0.64
145 199012 2.35 0.78 -1.49 0.6 0.01 -2.98 -2.39
146 199101 4.39 3.85 -1.73 0.52 -6.52 -2.04 6.15
147 199102 7.1 3.9 -0.58 0.48 -4.83 1.97 1.12
148 199103 2.45 3.92 -1.19 0.44 2.73 0.49 -0.23
149 199104 -0.2 0.53 1.43 0.53 -2.42 1.6 -1.19
150 199105 3.6 -0.31 -0.56 0.47 -0.12 0.35 1.4
151 199106 -4.82 0.06 1.23 0.42 0.4 2.14 -1.69
152 199107 4.19 -0.97 -1.29 0.49 4.34 2.06 0.82
153 199108 2.22 1.59 -0.8 0.46 1.59 -2.92 -0.43
154 199109 -1.56 1.68 -1.06 0.46 1.74 -0.81 -0.82
155 199110 1.36 0.85 -0.39 0.42 3.21 -1.28 2.25
156 199111 -4.12 -0.55 -1.77 0.39 1.26 -0.4 -2.67
157 199112 10.3 -2.26 -4.02 0.38 8.3 1.02 -0.85
158 199201 -0.46 8.43 4.63 0.34 -2.47 5.29 9.48
159 199202 1.06 0.87 6.37 0.28 -0.66 -2.69 5.41
160 199203 -2.71 -1.08 3.72 0.34 -0.35 -1.09 1.41
161 199204 1.02 -6.08 4.33 0.32 -2.6 -3.37 0.71
162 199205 0.36 0.42 1.17 0.28 0.11 -0.18 -0.47
163 199206 -2.25 -3.07 3.32 0.32 -0.61 0.86 1.32
164 199207 3.68 -0.39 -0.48 0.31 1.43 2.05 -1.26
165 199208 -2.34 -0.11 -1.09 0.26 -0.51 -1.57 -4.1
166 199209 0.98 0.58 -0.2 0.26 1.44 -1.12 -0.02
167 199210 0.87 2.07 -2.05 0.23 2.74 -0.22 -1.06
168 199211 3.79 3.63 -1.53 0.23 -0.32 -1.07 0.27
169 199212 1.5 1.63 2.53 0.28 4.47 1.21 0.8
170 199301 1.03 2.03 5.83 0.23 4.82 -0.52 5.54
171 199302 0.32 -3.36 6.5 0.22 3.11 -1.41 4.23
172 199303 2.26 0.23 1.23 0.25 3.74 -0.92 1.74
173 199304 -2.78 -0.64 2.65 0.24 0.33 -1.77 2.46
174 199305 2.74 1.97 -3.45 0.22 0.28 1.45 1.29
175 199306 0.29 -0.31 2.61 0.25 4.59 2.25 1.64
176 199307 -0.32 0.95 3.24 0.24 3.24 -2.7 0.99
177 199308 3.7 0.22 -0.4 0.25 2.58 1.3 1.23
178 199309 -0.2 3.08 -0.45 0.26 3.31 0.67 0.5
179 199310 1.59 1.45 -1.59 0.22 -2.7 1.96 1.78
180 199311 -2.01 -1.41 -0.31 0.25 -4.71 -1.37 1.49
181 199312 1.72 1.24 0.6 0.23 2.37 1.15 0.48
182 199401 2.9 0.11 2.15 0.25 0.09 1.75 3.78
183 199402 -2.63 2.72 -1.37 0.21 -0.27 0.42 -0.18
184 199403 -4.85 -0.9 1.29 0.27 -1.31 0.13 0.54
185 199404 0.68 -0.88 1.66 0.27 0.39 -0.35 0.17
186 199405 0.62 -2.05 0.12 0.32 -2.22 0.07 1.64
187 199406 -3.1 -0.49 1.71 0.31 -0.83 0.18 0.46
188 199407 2.78 -1.78 0.98 0.28 0.18 1.4 0.5
189 199408 3.89 1.45 -3.47 0.37 1.54 1.47 2.35
190 199409 -2.21 2.7 -1.83 0.37 1.29 -0.74 1.71
191 199410 1.07 -2.21 -2.35 0.38 1.48 -0.25 0.54
192 199411 -4.09 -0.16 -0.07 0.37 -0.19 -2.1 -1.63
193 199412 0.82 0.04 0.22 0.44 3.51 0.82 0.1
194 199501 1.62 -2.95 1.67 0.42 -1.82 4.05 -0.65
195 199502 3.56 -0.33 0.37 0.4 -0.33 2.38 -1.01
196 199503 2.24 -0.35 -2.04 0.46 0.38 -0.13 1.11
197 199504 2.06 -0.41 1.73 0.44 1.85 -0.58 0.36
198 199505 2.86 -2.24 1.97 0.54 -0.43 -0.44 -1.13
199 199506 2.65 3.07 -2.99 0.47 2.92 1.21 -1.85
200 199507 3.63 2.22 -2.15 0.45 2.57 -2.24 -0.97
201 199508 0.46 1.84 1.89 0.47 -0.02 1.32 -1.14
202 199509 3.21 -2.02 -0.92 0.43 2.63 -0.86 -1.01
203 199510 -1.6 -3.99 -0.08 0.47 4.14 -1.05 0.51
204 199511 3.85 -0.81 0.34 0.42 -0.6 0.56 0.55
205 199512 1.03 0.42 1.41 0.49 2.56 -0.95 3.96
206 199601 2.38 -2.44 0.36 0.43 0.55 1.08 1.34
207 199602 1.24 2.06 -2.32 0.39 0.58 2.27 -1.39
208 199603 0.7 1.31 1.23 0.39 -1.89 -0.08 -0.24
209 199604 2.09 4.89 -3.98 0.46 -0.93 0.7 -0.78
210 199605 2.26 3.22 -1.38 0.42 1.55 -1.08 1.16
211 199606 -1.23 -3.68 1.93 0.4 0.95 -0.22 -0.13
212 199607 -5.83 -3.57 4.39 0.45 -0.14 -2.48 0
213 199608 2.84 2.31 -0.59 0.41 -0.12 2.55 -1.47
214 199609 4.86 -0.82 -3.83 0.44 2.7 0.54 -2.12
215 199610 0.95 -4.11 4.81 0.42 3.82 -1.1 0.06
216 199611 6.15 -3.6 0.21 0.41 -2.39 0.17 -2.49
217 199612 -1.6 3.15 0.94 0.46 0.6 0.54 -0.57
218 199701 4.9 -1.51 -2.3 0.45 1.95 2.71 -1.58
219 199702 -0.5 -2.57 4.72 0.39 -2.02 1.27 0.84
220 199703 -4.92 -0.3 3.88 0.43 0.98 0.89 2.11
221 199704 3.81 -5.14 -1 0.43 4.81 2.39 -4.09
222 199705 6.67 4.79 -4.35 0.49 -5.2 2.83 -2.18
223 199706 4.04 1.52 0.7 0.37 2.67 0.81 0.19
224 199707 7.22 -2.42 -0.38 0.43 3.84 3.81 -1.16
225 199708 -4.04 7.48 1.03 0.41 -2.53 -0.07 3.18
226 199709 5.41 2.68 -0.28 0.44 1.46 1.68 -0.4
227 199710 -3.86 -0.81 2.31 0.42 -0.44 -0.97 0.35
228 199711 2.65 -5.05 1.03 0.39 0.29 -2.01 1.01
229 199712 1.3 -2.34 3.82 0.48 3.84 -3.05 0.12
230 199801 0.02 -1.01 -1.82 0.43 0.08 4.98 -1.11
231 199802 6.94 0.21 -0.72 0.39 -1.1 1.96 -1.18
232 199803 4.74 -1.18 1.67 0.39 2.14 1.84 2.3
233 199804 0.66 0.46 0.31 0.43 0.78 1.72 -0.93
234 199805 -2.97 -3.58 4.27 0.4 1.86 0.7 1.49
235 199806 2.78 -3.28 -1.84 0.41 7.26 -1.48 -0.75
236 199807 -2.74 -4.88 -1.08 0.4 3.69 -1.99 0.46
237 199808 -16.21 -5.7 5.14 0.43 1.91 -2.66 4.47
238 199809 5.92 -0.16 -3.96 0.46 -0.61 2.82 0.24
239 199810 7.12 -3.19 -2.71 0.32 -5.36 9.86 -4.23
240 199811 5.89 1.12 -3.29 0.31 1.18 1.22 -0.38
241 199812 5.93 -0.27 -4.8 0.38 9.03 -1.63 -1
242 199901 3.5 0.67 -5.61 0.35 3.02 -2.28 1.09
243 199902 -4.16 -5.68 1.71 0.35 -0.13 2.34 0.37
244 199903 3.36 -3.89 -2.88 0.43 -1.36 0.21 -1.09
245 199904 4.54 3.37 2.45 0.37 -9.14 2.36 5.14
246 199905 -2.41 3.69 2.69 0.34 -5.25 1.12 3.39
247 199906 4.68 3.37 -4.3 0.4 4.96 1.58 0.36
248 199907 -3.45 2.23 0.54 0.38 1.6 1.4 1.93
249 199908 -1.39 -1.24 -0.99 0.39 3.06 -3.51 -1.55
250 199909 -2.67 3.25 -3.08 0.39 6.49 -0.82 0.23
251 199910 5.82 -6.78 -3.26 0.39 5.48 -1.18 -2.76
252 199911 3.32 7.66 -7.99 0.36 5.57 0.09 5.14
253 199912 7.94 6.82 -9.19 0.44 13.2 -14.05 5.66
254 200001 -4.37 4.39 0.23 0.41 1.9 2.71 1.87
255 200002 2.75 22.06 -12.87 0.43 18.4 -13.35 7.59
256 200003 4.88 -16.62 7.91 0.47 -6.85 10.08 -5.17
257 200004 -6.41 -7.64 9.26 0.46 -8.47 -1.95 0.35
258 200005 -4.4 -4.66 3.8 0.5 -9.1 -8.73 -1.71
259 200006 4.76 13.74 -9.92 0.4 16.55 12.34 2.36
260 200007 -2.19 -2.79 8.45 0.48 -0.08 6.48 -3.27
261 200008 7.09 -0.9 -1.29 0.5 5.77 0.62 1.04
262 200009 -5.62 -1.84 6.87 0.51 2.18 2.49 -2.64
263 200010 -3.02 -3.63 4.8 0.56 -4.7 -4.74 -1.1
264 200011 -10.76 -3.07 12.39 0.51 -2.49 -14.52 0.35
265 200012 1.54 1.59 6.13 0.5 6.83 -6.63 2.91
266 200101 3.41 6.98 -5.67 0.54 -25.01 16.29 -2.61
267 200102 -10.32 -1.14 13.88 0.39 12.56 12.34 11
268 200103 -7.47 0.53 6.37 0.44 8.4 -7.67 3.9
269 200104 7.99 0.28 -4.39 0.39 -8.12 9.97 -3.79
270 200105 0.74 3.01 2.82 0.32 2.13 3.67 3.85
271 200106 -2.03 6.39 -2.11 0.28 0.3 0.46 2.08
272 200107 -2.13 -4.18 5.61 0.3 5.58 1.07 2.8
273 200108 -6.21 2.18 3.32 0.31 5.61 -3.96 5.92
274 200109 -9.43 -6.53 1.63 0.28 11.54 -4.9 0.05
275 200110 2.56 6.83 -6.99 0.22 -8.42 14.85 -1.66
276 200111 7.71 0.39 0.82 0.17 -8.62 -3.11 0.24
277 200112 1.64 5.12 0.39 0.15 0.01 1.68 1.26
278 200201 -1.74 1.15 3.46 0.14 3.73 1.59 3.52
279 200202 -2.3 -1.67 3.92 0.13 6.81 -0.11 4.09
280 200203 4.34 4.34 1.14 0.13 -1.68 2.85 2.11
281 200204 -5.11 5.84 4.21 0.15 7.92 2.08 6.12
282 200205 -1.19 -3.68 2.46 0.14 3.05 -2.7 2.4
283 200206 -7.16 3.55 1.47 0.13 6.19 -3.38 2.15
284 200207 -8.26 -5.16 -3.65 0.15 3.4 1.48 -2.94
285 200208 0.66 -2.19 2.17 0.14 1.73 1.39 -0.59
286 200209 -10.14 2.69 1.16 0.14 9.14 -1.8 -0.59
287 200210 7.35 -3.01 -6.51 0.14 -5.49 7.53 -0.38
288 200211 6.01 3.18 -1.54 0.12 -16.31 0.27 4.05
289 200212 -5.44 -0.52 3.86 0.11 9.65 10.58 2.26
290 200301 -2.44 1.4 -0.9 0.1 1.56 0.25 0.41
291 200302 -1.63 -0.27 -1.46 0.09 1.22 -0.8 -1.9
292 200303 0.93 0.83 -1.73 0.1 1.51 -0.22 -2.66
293 200304 8.18 1.11 -0.02 0.1 -9.44 3.17 -0.92
294 200305 6.26 4.69 0.16 0.09 -10.77 -1.44 3.47
295 200306 1.53 1.48 0.66 0.1 -0.97 -0.18 1.38
296 200307 2.24 5.62 -2.08 0.07 -0.29 2.59 0.37
297 200308 2.43 2.65 1.79 0.07 -0.54 -1.47 -0.35
298 200309 -0.99 0.57 0.92 0.08 -0.07 4.59 1.09
299 200310 5.96 2.87 1.84 0.07 3.88 2.04 2.02
300 200311 1.59 2.2 1.46 0.07 1.59 -1.44 1.93
301 200312 4.47 -2.78 2.64 0.08 -5.69 1.7 2.06
302 200401 2.23 2.61 1.66 0.07 2.58 2.24 1.91
303 200402 1.49 -1.15 0.34 0.06 -1.13 1.45 -2.95
304 200403 -1.16 1.87 -0.01 0.09 0.19 -2.17 -1.7
305 200404 -2.5 -2.56 -1.7 0.08 -5.38 -0.22 -2.36
306 200405 1.35 -0.15 -0.26 0.06 1.65 2.27 0.89
307 200406 2.08 2.28 1.68 0.08 2.08 0.31 1.79
308 200407 -3.87 -3.82 4.39 0.1 -2.31 -1.37 -2.51
309 200408 0.16 -1.54 1.12 0.11 -1.52 -2.41 -2.77
310 200409 1.94 2.85 0.34 0.11 5.26 3.05 -1.25
311 200410 1.67 0.42 -0.89 0.11 -1.5 0.14 0.98
312 200411 4.67 4.12 1.91 0.15 3.22 1.46 -1.16
313 200412 3.36 0.19 -0.35 0.16 -2.83 0.92 0.87
314 200501 -2.82 -1.62 2.49 0.16 3.12 1.57 -2.9
315 200502 2.11 -0.75 2.78 0.16 3.24 -2.33 -1.49
316 200503 -1.9 -1.3 1.65 0.21 0.92 0.16 -0.72
317 200504 -2.73 -3.96 -0.48 0.21 -0.83 -1.82 -1.48
318 200505 3.56 2.95 -1.17 0.24 0.43 3.18 0.48
319 200506 0.92 2.56 2.75 0.23 2.06 0.11 -1.49
320 200507 4.09 2.76 -0.46 0.24 0.04 -0.17 0.99
321 200508 -0.89 -0.89 1.42 0.3 2.21 -1.46 0.35
322 200509 0.77 -0.63 1.17 0.29 3.47 -3.7 -0.05
323 200510 -2.35 -1.04 -0.7 0.27 -1.29 1.56 -1.03
324 200511 3.73 1 -1.81 0.31 0.37 0.15 0.28
325 200512 0.03 -0.48 0.48 0.32 0.76 1.94 -0.86
326 200601 3.65 5.39 1.14 0.35 2.75 -1.09 1.16
327 200602 -0.5 -0.36 -0.83 0.34 -1.8 3.3 1.26
328 200603 1.54 3.54 -0.07 0.37 1.23 0.06 0.44
329 200604 0.94 -1.23 3.08 0.36 0.66 -0.34 -0.42
330 200605 -3.53 -2.99 2.78 0.43 -3.72 0.02 -0.16
331 200606 -0.44 -0.49 1.5 0.4 1.48 -0.55 -1.11
332 200607 -0.59 -3.94 3.3 0.4 -2.18 0.25 1.37
333 200608 2.09 0.81 -1.73 0.42 -3.46 1.74 2.92
334 200609 1.53 -1.21 -0.43 0.41 -0.94 0.74 1.65
335 200610 3.3 1.65 0.48 0.41 -0.23 -0.21 -0.46
336 200611 1.95 0.73 0.51 0.42 -1.01 -0.95 -1.93
337 200612 0.68 -0.89 2.54 0.4 0.83 2.38 1.93
338 200701 1.5 0.06 -0.1 0.44 0.26 1.07 -0.68
339 200702 -1.78 1.43 0.24 0.38 -1.32 0.3 -0.64
340 200703 0.87 -0.23 0.43 0.43 2.49 -2.02 -1.18
341 200704 3.55 -2.09 -0.96 0.44 -0.17 -0.28 0.28
342 200705 3.48 -0.06 -0.09 0.41 -0.32 -1.09 -2.48
343 200706 -1.87 0.67 -1.03 0.4 0.25 -0.84 -0.29
344 200707 -3.57 -2.7 -2.93 0.4 2.79 -3.35 -2.06
345 200708 0.75 -0.14 -2.37 0.42 0.11 -2.57 -0.24
346 200709 3.77 -2.47 -2.13 0.32 4.61 0.31 -2.78
347 200710 2.26 0.09 -1.92 0.32 4.89 -3.92 -1.58
348 200711 -5.27 -2.73 -1.02 0.34 0.89 -1.73 0.45
349 200712 -0.7 0.07 -0.05 0.27 6.51 -2.09 -2.28
350 200801 -6.44 -0.76 3.01 0.21 -7.84 6.97 1.76
351 200802 -2.33 -0.55 0.05 0.13 6.14 5.05 -2.18
352 200803 -1.21 0.86 0.17 0.17 4.14 -0.31 2.73
353 200804 4.94 -1.55 0.07 0.18 -0.21 3.13 -4.53
354 200805 2.21 2.84 -0.26 0.18 3.2 -2.31 -4.52
355 200806 -8.03 1.05 -1.06 0.17 12.52 -7.09 -3.18
356 200807 -1.47 3.74 3.59 0.15 -5.15 8.21 7.84
357 200808 0.99 3.79 1.48 0.13 -3.81 -0.63 1.06
358 200809 -9.97 -0.23 4.42 0.15 0.39 -3.74 5.8
359 200810 -18.55 -2.17 -3.07 0.08 7.81 -9.47 2.45
360 200811 -8.56 -3.57 -4.99 0.03 7.18 -10.22 -2.4
361 200812 2.06 3.99 -1.18 0.09 -5.03 5.3 0.3
362 200901 -7.75 -0.9 -9.93 0 -1.92 0.49 -7.12
363 200902 -10.12 -0.41 -6.75 0.01 4.25 -6.69 1.15
364 200903 8.75 0.75 2.57 0.02 -11.51 3.35 3.92
365 200904 11.04 5.16 5.68 0.01 -34.75 -6.94 -0.35
366 200905 6.73 -2.64 0.45 0 -12.49 -2.82 -1.97
367 200906 -0.28 2.65 -2.45 0.01 5.37 5.07 1.32
368 200907 8.23 2.47 4.82 0.01 -5.51 4.39 5.04
369 200908 3.18 -0.56 7.68 0.01 -8.87 -2.1 5.48
370 200909 4.52 2.33 1.47 0.01 -4.97 1.23 -1.78
371 200910 -2.84 -4.28 -4.37 0 2.65 2.12 -4.76
372 200911 5.74 -2.84 0.13 0 0.41 0.38 1.44
373 200912 2.91 5.89 0.72 0.01 2.94 1.57 0.7
374 201001 -3.71 0.43 0.57 0 -5.34 3.66 1.64
375 201002 3.53 1.39 2.75 0 3.61 1.83 2.58
376 201003 6.44 1.57 2.01 0.01 3.72 0.87 4.3
377 201004 2.02 5.01 3.14 0 3.2 -1.81 4.8
378 201005 -8 -0.01 -2.36 0.01 -0.26 0.55 -3.03
379 201006 -5.21 -2.08 -4.31 0.01 -2.88 -4.88 -5.34
380 201007 7.1 0.13 0.23 0.01 1.95 4.05 0.65
381 201008 -4.4 -2.91 -1.71 0.01 -0.12 1.06 -3.82
382 201009 9.24 3.96 -3.05 0.01 1.35 3.2 1.97
383 201010 3.88 0.94 -2.21 0.01 1.59 -1.37 -2.23
384 201011 0.56 3.78 -0.66 0.01 2.5 -0.91 -0.73
385 201012 6.77 0.78 3.53 0.01 -3.18 2.34 4.8
386 201101 2.01 -2.46 0.96 0.01 -0.22 0.02 1.03
387 201102 3.85 1.79 1.38 0.01 1.99 -0.99 1.29
388 201103 0.28 2.73 -1.31 0.01 3.55 -0.89 -1.91
389 201104 2.82 -0.23 -2.31 0 0.07 -1 -2.15

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,271 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Python\n",
"\n",
"using the [PyCall.jl](https://github.com/JuliaPy/PyCall.jl) package."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CovNWFn"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf, DelimitedFiles, LinearAlgebra, Statistics\n",
"\n",
"include(\"jlFiles/printmat.jl\")\n",
"include(\"jlFiles/OlsNW.jl\") #functions for OLS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample size: (388,)\n"
]
}
],
"source": [
"x = readdlm(\"Data/FFmFactorsPs.csv\",',',skipstart=1)\n",
"\n",
" #yearmonth, market, small minus big, high minus low\n",
"(ym,Rme,RSMB,RHML) = (x[:,1],x[:,2]/100,x[:,3]/100,x[:,4]/100) \n",
"x = nothing\n",
"\n",
"printlnPs(\"Sample size:\",size(Rme))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Do OLS (in Julia)\n",
"\n",
"use the function sin the file OlsNW.jl to do OLS. Report point estimates and standard errors."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (assuming iid residuals):\u001b[22m\u001b[39m\n",
"\n",
" b std_iid\n",
"c 0.007 0.002\n",
"SMB 0.217 0.073\n",
"HML -0.429 0.074\n",
"\n"
]
}
],
"source": [
"Y = Rme\n",
"T = size(Y,1)\n",
"X = [ones(T) RSMB RHML]\n",
"\n",
"(b,u,Yhat,V,R2) = OlsGMFn(Y,X)\n",
"std_iid = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (assuming iid residuals):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_iid],colNames=[\"b\",\"std_iid\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started with PyCall"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"using PyCall\n",
"sm = pyimport(\"statsmodels.api\"); #activate this package"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PyObject <class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y R-squared: 0.134\n",
"Model: OLS Adj. R-squared: 0.130\n",
"Method: Least Squares F-statistic: 29.85\n",
"Date: Mon, 08 Nov 2021 Prob (F-statistic): 8.88e-13\n",
"Time: 16:17:13 Log-Likelihood: 672.28\n",
"No. Observations: 388 AIC: -1339.\n",
"Df Residuals: 385 BIC: -1327.\n",
"Df Model: 2 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"const 0.0070 0.002 3.167 0.002 0.003 0.011\n",
"x1 0.2170 0.074 2.949 0.003 0.072 0.362\n",
"x2 -0.4291 0.074 -5.821 0.000 -0.574 -0.284\n",
"==============================================================================\n",
"Omnibus: 58.863 Durbin-Watson: 1.849\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 146.539\n",
"Skew: -0.749 Prob(JB): 1.51e-32\n",
"Kurtosis: 5.612 Cond. No. 38.8\n",
"==============================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"\"\"\"\n"
]
}
],
"source": [
"resultsP = sm.OLS(Y, X).fit() #can use Python functions directly\n",
"\n",
"println(resultsP.summary())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[:HC0_se, :HC1_se, :HC2_se, :HC3_se, :_HCCM, :__class__, :__delattr__, :__dict__, :__dir__, :__doc__, :__eq__, :__format__, :__ge__, :__getattribute__, :__gt__, :__hash__, :__init__, :__init_subclass__, :__le__, :__lt__, :__module__, :__ne__, :__new__, :__reduce__, :__reduce_ex__, :__repr__, :__setattr__, :__sizeof__, :__str__, :__subclasshook__, :__weakref__, :_abat_diagonal, :_cache, :_data_attr, :_data_in_cache, :_get_robustcov_results, :_is_nested, :_use_t, :_wexog_singular_values, :aic, :bic, :bse, :centered_tss, :compare_f_test, :compare_lm_test, :compare_lr_test, :condition_number, :conf_int, :conf_int_el, :cov_HC0, :cov_HC1, :cov_HC2, :cov_HC3, :cov_kwds, :cov_params, :cov_type, :df_model, :df_resid, :diagn, :eigenvals, :el_test, :ess, :f_pvalue, :f_test, :fittedvalues, :fvalue, :get_influence, :get_prediction, :get_robustcov_results, :info_criteria, :initialize, :k_constant, :llf, :load, :model, :mse_model, :mse_resid, :mse_total, :nobs, :normalized_cov_params, :outlier_test, :params, :predict, :pvalues, :remove_data, :resid, :resid_pearson, :rsquared, :rsquared_adj, :save, :scale, :ssr, :summary, :summary2, :t_test, :t_test_pairwise, :tvalues, :uncentered_tss, :use_t, :wald_test, :wald_test_terms, :wresid]\n"
]
}
],
"source": [
"println(keys(resultsP)) #print all keys (field names)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"Print the Julia and Python estimates (of the coefficients) in a table so we can compare directly."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"Print the smallest and largest values of the difference between the residuals according to Julia and those according to Python."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OLS (in Julia) with Robust Standard Errors\n",
"\n",
"Use standard errors that are robust to heteroskedastcity and autocorrelation (2 lags)."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (robust std):\u001b[22m\u001b[39m\n",
"\n",
" b std_nw\n",
"c 0.007 0.002\n",
"SMB 0.217 0.129\n",
"HML -0.429 0.118\n",
"\n"
]
}
],
"source": [
"(b,u,Yhat,V,R2) = OlsNWFn(Y,X,2)\n",
"std_nw = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (robust std):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_nw],colNames=[\"b\",\"std_nw\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3 \n",
"\n",
"Now redo the Python estimation with the same sort of robust standard errors. Hint: `resultsP.get_robustcov_results()`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"kernelspec": {
"display_name": "Julia 1.6.3",
"language": "julia",
"name": "julia-1.6"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,284 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# R\n",
"\n",
"using the [RCall.jl](https://juliainterop.github.io/RCall.jl/stable/) package."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CovNWFn"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf, DelimitedFiles, LinearAlgebra, Statistics\n",
"\n",
"include(\"jlFiles/printmat.jl\")\n",
"include(\"jlFiles/OlsNW.jl\") #functions for OLS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample size: (388,)\n"
]
}
],
"source": [
"x = readdlm(\"Data/FFmFactorsPs.csv\",',',skipstart=1)\n",
"\n",
" #yearmonth, market, small minus big, high minus low\n",
"(ym,Rme,RSMB,RHML) = (x[:,1],x[:,2]/100,x[:,3]/100,x[:,4]/100) \n",
"x = nothing\n",
"\n",
"printlnPs(\"Sample size:\",size(Rme))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Do OLS (in Julia)\n",
"\n",
"use the function sin the file OlsNW.jl to do OLS. Report point estimates and standard errors."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (assuming iid residuals):\u001b[22m\u001b[39m\n",
"\n",
" b std_iid\n",
"c 0.007 0.002\n",
"SMB 0.217 0.073\n",
"HML -0.429 0.074\n",
"\n"
]
}
],
"source": [
"Y = Rme\n",
"T = size(Y,1)\n",
"X = [ones(T) RSMB RHML]\n",
"\n",
"(b,u,Yhat,V,R2) = OlsGMFn(Y,X)\n",
"std_iid = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (assuming iid residuals):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_iid],colNames=[\"b\",\"std_iid\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started with RCall"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"using RCall"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RObject{VecSxp}\n",
"\n",
"Call:\n",
"lm(formula = Y ~ X + 0)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-0.20224 -0.02477 0.00335 0.02663 0.11840 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"X1 0.006983 0.002205 3.167 0.00166 ** \n",
"X2 0.216968 0.073565 2.949 0.00338 ** \n",
"X3 -0.429088 0.073710 -5.821 1.23e-08 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 0.04295 on 385 degrees of freedom\n",
"Multiple R-squared: 0.1488,\tAdjusted R-squared: 0.1422 \n",
"F-statistic: 22.44 on 3 and 385 DF, p-value: 2.07e-13\n",
"\n",
"\n"
]
},
{
"data": {
"text/plain": [
"RObject{VecSxp}\n",
"\n",
"Call:\n",
"lm(formula = Y ~ X + 0)\n",
"\n",
"Coefficients:\n",
" X1 X2 X3 \n",
" 0.006983 0.216968 -0.429088 \n",
"\n"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@rput X Y\n",
"\n",
"ResultsR = reval(\"summary(mod <- lm(Y ~ X+0))\") #print summary of regression\n",
"println(ResultsR)\n",
"\n",
"resultsR = reval(\"mod <- lm(Y ~ X+0)\") #get all output"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[:coefficients, :residuals, :effects, :rank, Symbol(\"fitted.values\"), :assign, :qr, Symbol(\"df.residual\"), :xlevels, :call, :terms, :model]\n"
]
}
],
"source": [
"println(names(resultsR)) #print all keys (field names)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"Print the Julia and Python estimates (of the coefficients) in a table so we can compare directly."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"Print the smallest and largest values of the difference between the residuals according to Julia and those according to Python."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OLS (in Julia) with Robust Standard Errors\n",
"\n",
"Use standard errors that are robust to heteroskedastcity and autocorrelation (2 lags)."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (robust std):\u001b[22m\u001b[39m\n",
"\n",
" b std_nw\n",
"c 0.007 0.002\n",
"SMB 0.217 0.129\n",
"HML -0.429 0.118\n",
"\n"
]
}
],
"source": [
"(b,u,Yhat,V,R2) = OlsNWFn(Y,X,2)\n",
"std_nw = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (robust std):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_nw],colNames=[\"b\",\"std_nw\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3 \n",
"\n",
"Now redo the R estimation with the same sort of robust standard errors. Hint: the `NeweyWest` in the `sandwich`package."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"kernelspec": {
"display_name": "Julia 1.6.3",
"language": "julia",
"name": "julia-1.6"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,132 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"using Downloads"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download a Book from Internet\n",
"\n",
"and read it into a string in Julia. Then report the number of letters etc (see below)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File to download: http://www.gutenberg.org/files/2600/2600-0.txt\n",
"\n",
"check the subfolder Results\n",
"\n"
]
}
],
"source": [
"if !isdir(\"Results\")\n",
" error(\"create the subfolder Results before running this program\")\n",
"end\n",
"\n",
"http = \"http://www.gutenberg.org/files/2600/2600-0.txt\"\n",
"\n",
"println(\"File to download: \",http)\n",
"Downloads.download(http,\"Results/WarAndPeace.txt\")\n",
"\n",
"println(\"\\ncheck the subfolder Results\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"fh = open(\"Results/WarAndPeace.txt\")\n",
"str = read(fh,String) \n",
"close(fh)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"1. Count the number of letters and the unique letters in `str`. Hint: `length() and `unique()`\n",
"\n",
"2. Count the number of word and lines. Hint: `split(str)` and `split(str,\"\\n\")`\n",
"\n",
"3. Count the number of unique words."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"1. How often is Borodinó mentioned. Hint: `occursin.(,words)`\n",
"\n",
"2. Print all lines that contain the word Borodinó. Hint: `occursin(,line)`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3\n",
"\n",
"1. Change Borodinó everywhere to Berëzina and then count the occurances"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"anaconda-cloud": {},
"kernel_info": {
"name": "julia-1.2"
},
"kernelspec": {
"display_name": "Julia 1.6.3",
"language": "julia",
"name": "julia-1.6"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.6.3"
},
"nteract": {
"version": "0.24.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,210 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load Packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"printyellow (generic function with 1 method)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf, Dates, Statistics, CSV, DataFrames\n",
"include(\"jlFiles/printmat.jl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Loading Some Data with CSV.jl"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The first 4 lines of Data/Options_prices_US_Canada.csv:\n",
"\n",
"symbol,exchange,date,adjusted close,option symbol,expiration,strike,call/put,style,ask,bid,volume,open interest,unadjusted\n",
"SPX,CBOE,03/30/17,2368.06,SPXW 170331C00300000,03/31/17,300,C,E,2073.9,2062.9,0,0,2368.927\n",
"SPX,CBOE,03/30/17,2368.06,SPXW 170331P00300000,03/31/17,300,P,E,0.1,0,0,0,2368.927\n",
"SPX,CBOE,03/30/17,2368.06,SPXW 170331C00400000,03/31/17,400,C,E,1974.1,1962.7,0,0,2368.927\n",
"\n"
]
}
],
"source": [
"DataFile = \"Data/Options_prices_US_Canada.csv\"\n",
"\n",
"println(\"The first 4 lines of $(DataFile):\\n\")\n",
"txt = readlines(DataFile)\n",
"printmat(txt[1:4])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use `normalizenames` to get names that can be used in Julia as variables names and specify the `dateformat` used in the csv file (to convert to proper Julia dates). The dates in the file are given as `03/30/17` which CSV/DataFrames interpret as 30 March year 17 (AD). We add `Dates.Year(2000)` to get year 2017."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m13952×10 DataFrame\u001b[0m\n",
"\u001b[1m Row \u001b[0m│\u001b[1m symbol \u001b[0m\u001b[1m date \u001b[0m\u001b[1m close \u001b[0m\u001b[1m expiration \u001b[0m\u001b[1m strike \u001b[0m\u001b[1m call_put \u001b[0m\u001b[1m ask \u001b[0m\u001b[1m\u001b[0m ⋯\n",
"\u001b[1m \u001b[0m│\u001b[90m String3 \u001b[0m\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m Date \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m String1 \u001b[0m\u001b[90m Float64 \u001b[0m\u001b[90m\u001b[0m ⋯\n",
"───────┼────────────────────────────────────────────────────────────────────────\n",
" 1 │ SPX 2017-03-30 2368.06 2017-03-31 300.0 C 2073.9 ⋯\n",
" 2 │ SPX 2017-03-30 2368.06 2017-03-31 300.0 P 0.1\n",
" 3 │ SPX 2017-03-30 2368.06 2017-03-31 400.0 C 1974.1\n",
" 4 │ SPX 2017-03-30 2368.06 2017-03-31 400.0 P 0.05\n",
" 5 │ SPX 2017-03-30 2368.06 2017-03-31 500.0 C 1874.1 ⋯\n",
" 6 │ SPX 2017-03-30 2368.06 2017-03-31 500.0 P 0.05\n",
" 7 │ SPX 2017-03-30 2368.06 2017-03-31 600.0 C 1774.1\n",
" 8 │ SPX 2017-03-30 2368.06 2017-03-31 600.0 P 0.05\n",
" 9 │ SPX 2017-03-30 2368.06 2017-03-31 700.0 C 1673.9 ⋯\n",
" 10 │ SPX 2017-03-30 2368.06 2017-03-31 700.0 P 0.05\n",
" 11 │ SPX 2017-03-30 2368.06 2017-03-31 750.0 C 1624.1\n",
" ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱\n",
" 13943 │ XIU 2017-03-30 23.06 2019-03-15 21.0 C 3.21\n",
" 13944 │ XIU 2017-03-30 23.06 2019-03-15 21.0 P 1.71 ⋯\n",
" 13945 │ XIU 2017-03-30 23.06 2019-03-15 22.0 C 2.53\n",
" 13946 │ XIU 2017-03-30 23.06 2019-03-15 22.0 P 2.03\n",
" 13947 │ XIU 2017-03-30 23.06 2019-03-15 23.0 C 1.97\n",
" 13948 │ XIU 2017-03-30 23.06 2019-03-15 23.0 P 2.51 ⋯\n",
" 13949 │ XIU 2017-03-30 23.06 2019-03-15 24.0 C 1.5\n",
" 13950 │ XIU 2017-03-30 23.06 2019-03-15 24.0 P 3.12\n",
" 13951 │ XIU 2017-03-30 23.06 2019-03-15 25.0 C 1.13\n",
" 13952 │ XIU 2017-03-30 23.06 2019-03-15 25.0 P 3.64 ⋯\n",
"\u001b[36m 3 columns and 13931 rows omitted\u001b[0m"
]
}
],
"source": [
"df1 = CSV.read(DataFile,DataFrame,normalizenames=true,dateformat=\"mm/dd/yy\")\n",
"\n",
"df1.date .+= Dates.Year(2000) #03/30/17 to 03/30/2017\n",
"df1.expiration .+= Dates.Year(2000)\n",
"\n",
"select!(df1,Not([:exchange,:option_symbol,:style,:unadjusted])) #deleting some columns\n",
"rename!(df1,:adjusted_close => :close) #renaming a column\n",
"\n",
"show(df1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"Create a new DataFrame that contains only the data for SPX and those option contracts that were traded (volume > 0). Hint: `df1[vv, :]` picks out the rows of the data frame for which `vv` is `true`. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"Create a *group* for each expiration date. These groups can be referred to as `dataG2[key]`.\n",
"\n",
"Hints: `groupby()`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3\n",
"\n",
"Print the number of contracts (`nrow`) and the sum of the open interest `:open_interest=>sum` for each of the expiration dates.\n",
"\n",
"Hint: `combine()`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 4 \n",
"Creating two new DataFrames: for expiration date 2017-04-21 and another for 2017-06-16.\n",
"\n",
"Hint: `dataG2[(expiration = Date(\"2017-04-21\"),)]`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 5\n",
"\n",
"For the expiration date 2017-04-21, calculate the mid price as the average of the `.ask` and `.bid`. \n",
"\n",
"Plot the mid price as a function of the strike price `.strike` for put options. Add a curve another curve for the call options."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Julia 1.7.0",
"language": "julia",
"name": "julia-1.7"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.7.0"
},
"nteract": {
"version": "0.23.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,229 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Packages and Extra Functions"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"printyellow (generic function with 1 method)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf, Distributions, OffsetArrays, FiniteDiff\n",
"\n",
"include(\"jlFiles/OptionsCalculations.jl\")\n",
"include(\"jlFiles/printmat.jl\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"using Plots\n",
"#pyplot(size=(600,400))\n",
"gr(size=(480,320))\n",
"default(fmt = :svg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Black-Scholes Model\n",
"\n",
"The next cell calculates call `C` and put prices `P` from the Black-Scholes formula.\n",
"\n",
"The key parameters are:\n",
"`(S,K,m,y,σ) = (current undelying price, strike price,time to expiration,interest rate, volatility)`"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call price at K=42: 2.893 \n",
"\n",
"put price at K=42: 1.856 \n",
"\n"
]
}
],
"source": [
"(S,K,m,y,σ) = (42,42,0.5,0.05,0.2)\n",
"\n",
"C = OptionBlackSPs(S,K,m,y,σ)\n",
"printlnPs(\"call price at K=$K: \",C,\"\\n\")\n",
"\n",
"P = OptionBlackSPs(S,K,m,y,σ,0,true)\n",
"printlnPs(\"put price at K=$K: \",P,\"\\n\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"For a range of different prices of the underlying asset `S=30.0:60.0`, calculat the call and put prices and plot them (with `S` on the hoizontal axis)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The Binomial Option Pricing Model\n",
"\n",
"The next cell contains functions to implement a binomial option pricing model for European style (exercise at expiration only) and American style (exercise any day) options. We use the CRR (Cox-Ross-Rubinstein) parameterisation.\n",
"\n",
"The key parameters are the same as before, but also `n` which is the number of time steps used in the calculations (which defaults to 250)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"BOPM_American (generic function with 3 methods)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\"\"\"\n",
"CRRparams(σ,m,n,y)\n",
"\n",
" BOPM parameters according to CRR\n",
"\"\"\"\n",
"function CRRparams(σ,m,y,n)\n",
" h = m/n #time step size (in years)\n",
" u = exp(σ*sqrt(h)) #up move\n",
" d = exp(-σ*sqrt(h)) #down move\n",
" p = (exp(y*h) - d)/(u-d) #rn prob of up move\n",
" return h,u,d,p\n",
"end \n",
"\n",
"function BOPM_European(S,K,m,y,σ,isPut=false,n=250)\n",
" (h,u,d,p) = CRRparams(σ,m,y,n)\n",
" STree = BuildSTree(S,n,u,d)\n",
" price = EuOptionPrice(STree,K,y,h,p,isPut)[0][]\n",
" return price\n",
"end\n",
"\n",
"function BOPM_American(S,K,m,y,σ,isPut=false,n=250)\n",
" (h,u,d,p) = CRRparams(σ,m,y,n)\n",
" STree = BuildSTree(S,n,u,d)\n",
" price = AmOptionPrice(STree,K,y,h,p,isPut)[1][0][1]\n",
" return price\n",
"end"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call (Eu) 2.891\n",
"put (Eu) 1.854\n",
"call (Am) 2.891\n",
"put (Am) 1.954\n",
"\n",
"\u001b[31m\u001b[1mNotice that c_e=c_a but that p_a>=p_e\u001b[22m\u001b[39m\n"
]
}
],
"source": [
"c_e = BOPM_European(S,K,m,y,σ,false) #call price, European style\n",
"p_e = BOPM_European(S,K,m,y,σ,true) #put price, European\n",
"\n",
"c_a = BOPM_American(S,K,m,y,σ,false) #call, American\n",
"p_a = BOPM_American(S,K,m,y,σ,true) #put, American\n",
"\n",
"printmat([c_e,p_e,c_a,p_a],rowNames=[\"call (Eu)\",\"put (Eu)\",\"call (Am)\",\"put (Am)\"])\n",
"\n",
"printred(\"Notice that c_e=c_a but that p_a>=p_e\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"Redo the calculation of p_e and p_a for `S=30:60` and plot the prices."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Delta\n",
"\n",
"To hedge an option contract (eg. if we are short one option contract), we buy $\\Delta$ units of the underlying asset, where $\\Delta$ is the partial derivative of the option price with respect to the price of the underlying asset.\n",
"\n",
"Calculate $\\Delta$ for both the European and American puts, using the BOPM function. Do the calculation for each value in `S_range` and plot the results.\n",
"\n",
"To calculate the derivatives we could use, for instance, \n",
"`FiniteDiff.finite_difference_derivative(the function,an S value)`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Julia 1.6.3",
"language": "julia",
"name": "julia-1.6"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,369 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Python\n",
"\n",
"using the [PyCall.jl](https://github.com/JuliaPy/PyCall.jl) package."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CovNWFn"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf, DelimitedFiles, LinearAlgebra, Statistics\n",
"\n",
"include(\"jlFiles/printmat.jl\")\n",
"include(\"jlFiles/OlsNW.jl\") #functions for OLS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample size: (388,)\n"
]
}
],
"source": [
"x = readdlm(\"Data/FFmFactorsPs.csv\",',',skipstart=1)\n",
"\n",
" #yearmonth, market, small minus big, high minus low\n",
"(ym,Rme,RSMB,RHML) = (x[:,1],x[:,2]/100,x[:,3]/100,x[:,4]/100) \n",
"x = nothing\n",
"\n",
"printlnPs(\"Sample size:\",size(Rme))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Do OLS (in Julia)\n",
"\n",
"use the function sin the file OlsNW.jl to do OLS. Report point estimates and standard errors."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (assuming iid residuals):\u001b[22m\u001b[39m\n",
"\n",
" b std_iid\n",
"c 0.007 0.002\n",
"SMB 0.217 0.073\n",
"HML -0.429 0.074\n",
"\n"
]
}
],
"source": [
"Y = Rme\n",
"T = size(Y,1)\n",
"X = [ones(T) RSMB RHML]\n",
"\n",
"(b,u,Yhat,V,R2) = OlsGMFn(Y,X)\n",
"std_iid = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (assuming iid residuals):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_iid],colNames=[\"b\",\"std_iid\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started with PyCall"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"using PyCall\n",
"sm = pyimport(\"statsmodels.api\"); #activate this package"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PyObject <class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y R-squared: 0.134\n",
"Model: OLS Adj. R-squared: 0.130\n",
"Method: Least Squares F-statistic: 29.85\n",
"Date: Thu, 09 Dec 2021 Prob (F-statistic): 8.88e-13\n",
"Time: 10:00:28 Log-Likelihood: 672.28\n",
"No. Observations: 388 AIC: -1339.\n",
"Df Residuals: 385 BIC: -1327.\n",
"Df Model: 2 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"const 0.0070 0.002 3.167 0.002 0.003 0.011\n",
"x1 0.2170 0.074 2.949 0.003 0.072 0.362\n",
"x2 -0.4291 0.074 -5.821 0.000 -0.574 -0.284\n",
"==============================================================================\n",
"Omnibus: 58.863 Durbin-Watson: 1.849\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 146.539\n",
"Skew: -0.749 Prob(JB): 1.51e-32\n",
"Kurtosis: 5.612 Cond. No. 38.8\n",
"==============================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
"\"\"\"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"┌ Warning: `vendor()` is deprecated, use `BLAS.get_config()` and inspect the output instead\n",
"│ caller = npyinitialize() at numpy.jl:67\n",
"└ @ PyCall C:\\Users\\psoderlind\\.julia\\packages\\PyCall\\3fwVL\\src\\numpy.jl:67\n"
]
}
],
"source": [
"resultsP = sm.OLS(Y, X).fit() #can use Python functions directly\n",
"\n",
"println(resultsP.summary())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[:HC0_se, :HC1_se, :HC2_se, :HC3_se, :_HCCM, :__class__, :__delattr__, :__dict__, :__dir__, :__doc__, :__eq__, :__format__, :__ge__, :__getattribute__, :__gt__, :__hash__, :__init__, :__init_subclass__, :__le__, :__lt__, :__module__, :__ne__, :__new__, :__reduce__, :__reduce_ex__, :__repr__, :__setattr__, :__sizeof__, :__str__, :__subclasshook__, :__weakref__, :_abat_diagonal, :_cache, :_data_attr, :_data_in_cache, :_get_robustcov_results, :_is_nested, :_use_t, :_wexog_singular_values, :aic, :bic, :bse, :centered_tss, :compare_f_test, :compare_lm_test, :compare_lr_test, :condition_number, :conf_int, :conf_int_el, :cov_HC0, :cov_HC1, :cov_HC2, :cov_HC3, :cov_kwds, :cov_params, :cov_type, :df_model, :df_resid, :diagn, :eigenvals, :el_test, :ess, :f_pvalue, :f_test, :fittedvalues, :fvalue, :get_influence, :get_prediction, :get_robustcov_results, :info_criteria, :initialize, :k_constant, :llf, :load, :model, :mse_model, :mse_resid, :mse_total, :nobs, :normalized_cov_params, :outlier_test, :params, :predict, :pvalues, :remove_data, :resid, :resid_pearson, :rsquared, :rsquared_adj, :save, :scale, :ssr, :summary, :summary2, :t_test, :t_test_pairwise, :tvalues, :uncentered_tss, :use_t, :wald_test, :wald_test_terms, :wresid]\n"
]
}
],
"source": [
"println(keys(resultsP)) #print all keys (field names)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"Print the Julia and Python estimates (of the coefficients) in a table so we can compare directly."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Comparing the estimates in Julia and Python\n",
" 0.007 0.007\n",
" 0.217 0.217\n",
" -0.429 -0.429\n",
"\n"
]
}
],
"source": [
"b_P = resultsP.params #the numerical results are now a Julia vector\n",
"\n",
"println(\"Comparing the estimates in Julia and Python\")\n",
"printmat([b b_P])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"Print the smallest and largest values of the difference between the residuals according to Julia and those according to Python."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(-2.7755575615628914e-17, 4.163336342344337e-17)\n",
"\n"
]
}
],
"source": [
"printmat(extrema(resultsP.resid - u))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OLS (in Julia) with Robust Standard Errors\n",
"\n",
"Use standard errors that are robust to heteroskedastcity and autocorrelation (2 lags)."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (robust std):\u001b[22m\u001b[39m\n",
"\n",
" b std_nw\n",
"c 0.007 0.002\n",
"SMB 0.217 0.129\n",
"HML -0.429 0.118\n",
"\n"
]
}
],
"source": [
"(b,u,Yhat,V,R2) = OlsNWFn(Y,X,2)\n",
"std_nw = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (robust std):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_nw],colNames=[\"b\",\"std_nw\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3 \n",
"\n",
"Now redo the Python estimation with the same sort of robust standard errors. Hint: `resultsP.get_robustcov_results()`"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PyObject <class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y R-squared: 0.134\n",
"Model: OLS Adj. R-squared: 0.130\n",
"Method: Least Squares F-statistic: 11.87\n",
"Date: Thu, 09 Dec 2021 Prob (F-statistic): 9.94e-06\n",
"Time: 10:00:32 Log-Likelihood: 672.28\n",
"No. Observations: 388 AIC: -1339.\n",
"Df Residuals: 385 BIC: -1327.\n",
"Df Model: 2 \n",
"Covariance Type: HAC \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"const 0.0070 0.002 2.850 0.005 0.002 0.012\n",
"x1 0.2170 0.129 1.688 0.092 -0.036 0.470\n",
"x2 -0.4291 0.118 -3.649 0.000 -0.660 -0.198\n",
"==============================================================================\n",
"Omnibus: 58.863 Durbin-Watson: 1.849\n",
"Prob(Omnibus): 0.000 Jarque-Bera (JB): 146.539\n",
"Skew: -0.749 Prob(JB): 1.51e-32\n",
"Kurtosis: 5.612 Cond. No. 38.8\n",
"==============================================================================\n",
"\n",
"Notes:\n",
"[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction\n",
"\"\"\"\n"
]
}
],
"source": [
"resultsP2 = resultsP.get_robustcov_results(cov_type=\"HAC\",maxlags=2)\n",
"\n",
"println(resultsP2.summary())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"kernelspec": {
"display_name": "Julia 1.7.0",
"language": "julia",
"name": "julia-1.7"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,363 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# R\n",
"\n",
"using the [RCall.jl](https://juliainterop.github.io/RCall.jl/stable/) package."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"CovNWFn"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf, DelimitedFiles, LinearAlgebra, Statistics\n",
"\n",
"include(\"jlFiles/printmat.jl\")\n",
"include(\"jlFiles/OlsNW.jl\") #functions for OLS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample size: (388,)\n"
]
}
],
"source": [
"x = readdlm(\"Data/FFmFactorsPs.csv\",',',skipstart=1)\n",
"\n",
" #yearmonth, market, small minus big, high minus low\n",
"(ym,Rme,RSMB,RHML) = (x[:,1],x[:,2]/100,x[:,3]/100,x[:,4]/100) \n",
"x = nothing\n",
"\n",
"printlnPs(\"Sample size:\",size(Rme))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Do OLS (in Julia)\n",
"\n",
"use the function sin the file OlsNW.jl to do OLS. Report point estimates and standard errors."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (assuming iid residuals):\u001b[22m\u001b[39m\n",
"\n",
" b std_iid\n",
"c 0.007 0.002\n",
"SMB 0.217 0.073\n",
"HML -0.429 0.074\n",
"\n"
]
}
],
"source": [
"Y = Rme\n",
"T = size(Y,1)\n",
"X = [ones(T) RSMB RHML]\n",
"\n",
"(b,u,Yhat,V,R2) = OlsGMFn(Y,X)\n",
"std_iid = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (assuming iid residuals):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_iid],colNames=[\"b\",\"std_iid\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started with RCall"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"using RCall"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RObject{VecSxp}\n",
"\n",
"Call:\n",
"lm(formula = Y ~ X + 0)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-0.20224 -0.02477 0.00335 0.02663 0.11840 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"X1 0.006983 0.002205 3.167 0.00166 ** \n",
"X2 0.216968 0.073565 2.949 0.00338 ** \n",
"X3 -0.429088 0.073710 -5.821 1.23e-08 ***\n",
"---\n",
"Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
"\n",
"Residual standard error: 0.04295 on 385 degrees of freedom\n",
"Multiple R-squared: 0.1488,\tAdjusted R-squared: 0.1422 \n",
"F-statistic: 22.44 on 3 and 385 DF, p-value: 2.07e-13\n",
"\n",
"\n"
]
},
{
"data": {
"text/plain": [
"RObject{VecSxp}\n",
"\n",
"Call:\n",
"lm(formula = Y ~ X + 0)\n",
"\n",
"Coefficients:\n",
" X1 X2 X3 \n",
" 0.006983 0.216968 -0.429088 \n",
"\n"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@rput X Y\n",
"\n",
"ResultsR = reval(\"summary(mod <- lm(Y ~ X+0))\") #print summary of regression\n",
"println(ResultsR)\n",
"\n",
"resultsR = reval(\"mod <- lm(Y ~ X+0)\") #get all output"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[:coefficients, :residuals, :effects, :rank, Symbol(\"fitted.values\"), :assign, :qr, Symbol(\"df.residual\"), :xlevels, :call, :terms, :model]\n"
]
}
],
"source": [
"println(names(resultsR)) #print all keys (field names)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"Print the Julia and Python estimates (of the coefficients) in a table so we can compare directly."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Comparing the estimates in Julia and R\n",
" 0.007 0.007\n",
" 0.217 0.217\n",
" -0.429 -0.429\n",
"\n"
]
}
],
"source": [
"b_R = rcopy(resultsR[:coefficients]) #the numerical results are now a Julia vector\n",
"\n",
"println(\"Comparing the estimates in Julia and R\")\n",
"printmat([b b_R])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"Print the smallest and largest values of the difference between the residuals according to Julia and those according to Python."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(-1.942890293094024e-16, 6.453171330633722e-16)\n",
"\n"
]
}
],
"source": [
"resid_R = rcopy(resultsR[:residuals]) \n",
"\n",
"printmat(extrema(resid_R - u))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OLS (in Julia) with Robust Standard Errors\n",
"\n",
"Use standard errors that are robust to heteroskedastcity and autocorrelation (2 lags)."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34m\u001b[1mOLS Results (robust std):\u001b[22m\u001b[39m\n",
"\n",
" b std_nw\n",
"c 0.007 0.002\n",
"SMB 0.217 0.129\n",
"HML -0.429 0.118\n",
"\n"
]
}
],
"source": [
"(b,u,Yhat,V,R2) = OlsNWFn(Y,X,2)\n",
"std_nw = sqrt.(diag(V))\n",
"\n",
"printblue(\"OLS Results (robust std):\\n\")\n",
"xNames = [\"c\",\"SMB\",\"HML\"]\n",
"printmat([b std_nw],colNames=[\"b\",\"std_nw\"],rowNames=xNames)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3 \n",
"\n",
"Now redo the R estimation with the same sort of robust standard errors. Hint: the `NeweyWest` in the `sandwich`package."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"@rlibrary sandwich"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" bstd_nw (R)\n",
"c 0.007 0.002\n",
"SMB 0.217 0.129\n",
"HML -0.429 0.118\n",
"\n"
]
}
],
"source": [
"reval(\"mod <- lm(Y ~ X+0)\")\n",
"\n",
"VCV_nwR = reval(NeweyWest(resultsR,lag=2,prewhite=0))\n",
"std_nwR = sqrt.(diag(rcopy(VCV_nwR)))\n",
"\n",
"printmat([b std_nwR],colNames=[\"b\",\"std_nw (R)\"],rowNames=xNames)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"kernelspec": {
"display_name": "Julia 1.7.0",
"language": "julia",
"name": "julia-1.7"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,389 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"using Downloads"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download a Book from Internet\n",
"\n",
"and read it into a string in Julia. Then report the number of letters etc (see below)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File to download: http://www.gutenberg.org/files/2600/2600-0.txt\n",
"\n",
"check the subfolder Results\n",
"\n"
]
}
],
"source": [
"if !isdir(\"Results\")\n",
" error(\"create the subfolder Results before running this program\")\n",
"end\n",
"\n",
"http = \"http://www.gutenberg.org/files/2600/2600-0.txt\"\n",
"\n",
"println(\"File to download: \",http)\n",
"Downloads.download(http,\"Results/WarAndPeace.txt\")\n",
"\n",
"println(\"\\ncheck the subfolder Results\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"fh = open(\"Results/WarAndPeace.txt\")\n",
"str = read(fh,String) \n",
"close(fh)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 1\n",
"\n",
"1. Count the number of letters and the unique letters in `str`. Hint: `length() and `unique()`\n",
"\n",
"2. Count the number of word and lines. Hint: `split(str)` and `split(str,\"\\n\")`\n",
"\n",
"3. Count the number of unique words."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of letters and unique letters in W&P: 3293555 113\n",
"\n",
"unique letters: ['\\ufeff', 'T', 'h', 'e', ' ', 'P', 'r', 'o', 'j', 'c', 't', 'G', 'u', 'n', 'b', 'g', 'B', 'k', 'f', 'W', 'a', 'd', ',', 'y', 'L', 'l', 's', '\\r', '\\n', 'i', 'w', 'U', 'S', 'm', 'p', 'v', '.', 'Y', '-', 'I', ':', 'A', 'M', 'R', 'D', '2', '0', '1', '[', '#', '6', ']', 'J', '9', 'E', 'C', 'F', '8', 'V', '*', 'O', 'H', 'N', 'K', '/', '5', 'X', '7', '3', '“', '', '—', '', '!', '?', '”', 'á', 'é', 'ë', 'í', ';', 'x', '(', ')', 'z', 'q', 'À', 'ó', 'ú', 'è', 'î', 'ô', 'à', 'ç', 'Q', 'â', 'ê', 'ï', 'Z', '4', 'ý', 'ö', 'ä', 'ü', 'Á', 'œ', 'É', '=', 'æ', '\"', '%', '\\'', '$']\n",
"\n",
"ASCII letters: ['T', 'h', 'e', ' ', 'P', 'r', 'o', 'j', 'c', 't', 'G', 'u', 'n', 'b', 'g', 'B', 'k', 'f', 'W', 'a', 'd', ',', 'y', 'L', 'l', 's', '\\r', '\\n', 'i', 'w', 'U', 'S', 'm', 'p', 'v', '.', 'Y', '-', 'I', ':', 'A', 'M', 'R', 'D', '2', '0', '1', '[', '#', '6', ']', 'J', '9', 'E', 'C', 'F', '8', 'V', '*', 'O', 'H', 'N', 'K', '/', '5', 'X', '7', '3', '!', '?', ';', 'x', '(', ')', 'z', 'q', 'Q', 'Z', '4', '=', '\"', '%', '\\'', '$']\n"
]
}
],
"source": [
"n = length(str)\n",
"letters = unique(str)\n",
"println(\"number of letters and unique letters in W&P: \", n,\" \",length(letters))\n",
"\n",
"println(\"\\nunique letters: \",letters)\n",
"\n",
"vv = isascii.(letters)\n",
"println(\"\\nASCII letters: \",letters[vv])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of words in W&P, including pre-amble, etc: 566334\n",
"number of lines in W&P, including pre-amble, etc: 66033\n"
]
}
],
"source": [
"words = split(str)\n",
"println(\"number of words in W&P, including pre-amble, etc: \",length(words))\n",
"\n",
"lines = split(str,\"\\n\")\n",
"println(\"number of lines in W&P, including pre-amble, etc: \",length(lines))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"How many unique words are there in the file?\n",
"Number of unique words: 41971\n"
]
}
],
"source": [
"println(\"How many unique words are there in the file?\")\n",
"UniqueWords = unique(words)\n",
"\n",
"println(\"Number of unique words: \",length(UniqueWords))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 2\n",
"\n",
"1. How often is Borodinó mentioned. Hint: `occursin.(,words)`\n",
"\n",
"2. Print all lines that contain the word Borodinó. Hint: `occursin(,line)`"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"How often is Borodinó mentioned?\n",
"108\n",
"108\n"
]
}
],
"source": [
"println(\"How often is Borodinó mentioned?\") \n",
"\n",
"println(sum(occursin.(\"Borodinó\",words))) #\"Borodinó\" or \"Borodinó. or similarly\n",
"\n",
"println(sum(z->occursin(\"Borodinó\",z),words)) #quicker approach"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"print the line numbers and the lines that contain the word Borodinó:\n",
"\n",
"38971 they reached Borodinó, seventy miles from Moscow. From Vyázma Napoleon\n",
"41375 the twenty-sixth the battle of Borodinó itself took place.\n",
"41377 Why and how were the battles of Shevárdino and Borodinó given and\n",
"41378 accepted? Why was the battle of Borodinó fought? There was not the least\n",
"41399 Before the battle of Borodinó our strength in proportion to the French\n",
"41416 In giving and accepting battle at Borodinó, Kutúzov acted involuntarily\n",
"41427 On the other question, how the battle of Borodinó and the preceding\n",
"41434 position at Borodinó.\n",
"41438 to it, from Borodinó to Utítsa, at the very place where the battle was\n",
"41445 the field of Borodinó.\n",
"41451 during the retreat passed many positions better than Borodinó. They did\n",
"41457 and that the position at Borodinó (the one where the battle was fought),\n",
"41463 Borodinó to the left of, and at a right angle to, the highroad (that\n",
"41481 later, when reports on the battle of Borodinó were written at leisure,\n",
"41486 the battle of Borodinó was fought by us on an entrenched position\n",
"41493 village of Nóvoe, and the center at Borodinó at the confluence of the\n",
"41496 To anyone who looks at the field of Borodinó without thinking of how\n",
"41503 to Borodinó (he could not have seen that position because it did not\n",
"41514 Borodinó—a plain no more advantageous as a position than any other plain\n",
"41531 and chief action of the battle of Borodinó was already lost on the\n",
"41551 distinct from the main course of the battle.) So the battle of Borodinó\n",
"41554 army and people) it has been described. The battle of Borodinó was not\n",
"41557 Shevárdino Redoubt, the Russians fought the battle of Borodinó on an\n",
"41749 hundred paces in front of the knoll and below it. This was Borodinó.\n",
"41780 “Borodinó,” the other corrected him.\n",
"41814 entrenchments. There, you see? Theres our center, at Borodinó, just\n",
"41855 A church procession was coming up the hill from Borodinó. First along\n",
"42128 Borodinó and thence turned to the left, passing an enormous number of\n",
"42133 him than any other spot on the plain of Borodinó.\n",
"42643 On August 25, the eve of the battle of Borodinó, M. de Beausset, prefect\n",
"42949 The fourth order was: The vice-King will occupy the village (Borodinó)\n",
"42957 given him, he was to advance from the left through Borodinó to the\n",
"42962 not be executed. After passing through Borodinó the vice-King was driven\n",
"42982 Many historians say that the French did not win the battle of Borodinó\n",
"42993 battle of Borodinó, and if this or that other arrangement depended on\n",
"43015 men at Borodinó was not due to Napoleons will, though he ordered the\n",
"43022 At the battle of Borodinó Napoleon shot at no one and killed no one.\n",
"43026 The French soldiers went to kill and be killed at the battle of Borodinó\n",
"43065 than previous ones because the battle of Borodinó was the first Napoleon\n",
"43078 Napoleon at the battle of Borodinó fulfilled his office as\n",
"43286 Pierre most of all was the view of the battlefield itself, of Borodinó\n",
"43289 Above the Kolochá, in Borodinó and on both sides of it, especially to\n",
"43297 riverbanks and in Borodinó. A white church could be seen through the\n",
"43298 mist, and here and there the roofs of huts in Borodinó as well as dense\n",
"43301 the whole space. Just as in the mist-enveloped hollow near Borodinó, so\n",
"43386 bridge across the Kolochá between Górki and Borodinó, which the French\n",
"43387 (having occupied Borodinó) were attacking in the first phase of the\n",
"43819 The chief action of the battle of Borodinó was fought within the seven\n",
"43820 thousand feet between Borodinó and Bagratións flèches. Beyond that\n",
"43825 battlefield. On the field between Borodinó and the flèches, beside the\n",
"43834 troops advanced on Borodinó from their left.\n",
"43838 to Borodinó, so that Napoleon could not see what was happening there,\n",
"43886 Borodinó had been occupied and the bridge over the Kolochá was in the\n",
"43890 as soon in fact as the adjutant had left Borodinó—the bridge had been\n",
"44222 times repulsed. In the center the French had not got beyond Borodinó,\n",
"44301 of the field of Borodinó.\n",
"44821 hundreds of years the peasants of Borodinó, Górki, Shevárdino, and\n",
"44903 Russians at Borodinó. The French invaders, like an infuriated animal\n",
"44909 wound it had received at Borodinó. The direct consequence of the battle\n",
"44910 of Borodinó was Napoleons senseless flight from Moscow, his retreat\n",
"44913 which at Borodinó for the first time the hand of an opponent of stronger\n",
"45069 from Smolénsk to Borodinó. The French army pushed on to Moscow, its\n",
"45078 consolidated. At Borodinó a collision took place. Neither army was\n",
"45097 Russian army were convinced that the battle of Borodinó was a victory.\n",
"45185 the twenty-sixth at Borodinó, and each day and hour and minute of the\n",
"45186 retreat from Borodinó to Filí.\n",
"45449 After the battle of Borodinó the abandonment and burning of Moscow was\n",
"45491 that could happen. They went away even before the battle of Borodinó and\n",
"45873 Borodinó.\n",
"45881 Toward the end of the battle of Borodinó, Pierre, having run down\n",
"46434 and commotion. Every day thousands of men wounded at Borodinó were\n",
"46442 Some said there had been another battle after Borodinó at which the\n",
"47598 to the second of September, that is from the battle of Borodinó to the\n",
"48315 ever since the battle of Borodinó, for all the generals who came to\n",
"48353 if after the battle of Borodinó, when the surrender of Moscow became\n",
"49092 particularly of the battle of Borodinó and of that vague sense of his\n",
"50087 ambulance station on the field of Borodinó. His feverish state and the\n",
"50105 Borodinó. They were accompanied by a doctor, Prince Andrews valet, his\n",
"50835 battle of Borodinó, there was a soiree, the chief feature of which was\n",
"51280 A few days before the battle of Borodinó, Nicholas received the\n",
"51740 The dreadful news of the battle of Borodinó, of our losses in killed and\n",
"51747 When he received the news of the battle of Borodinó and the abandonment\n",
"53596 The historians consider that, next to the battle of Borodinó and the\n",
"53703 whole campaign and by the battle of Borodinó, the Russian army—when\n",
"53711 Borodinó had been a victory, he alone—who as commander in chief might\n",
"53715 The beast wounded at Borodinó was lying where the fleeing hunter had\n",
"54244 or deliberately deceive themselves. No battle—Tarútino, Borodinó, or\n",
"54858 of Borodinó. He had sought it in philanthropy, in Freemasonry, in the\n",
"55314 day long. At the battle of Borodinó, when Bagratión was killed and nine\n",
"55319 And the quiet little Dokhtúrov rode thither, and Borodinó became the\n",
"55543 The undecided question as to whether the wound inflicted at Borodinó was\n",
"55658 That army could not recover anywhere. Since the battle of Borodinó\n",
"55805 The Battle of Borodinó, with the occupation of Moscow that followed it\n",
"55840 history: to say that the field of battle at Borodinó remained in the\n",
"55844 After the French victory at Borodinó there was no general engagement nor\n",
"55855 The period of the campaign of 1812 from the battle of Borodinó to the\n",
"55895 retreats after battles, the blow dealt at Borodinó and the renewed\n",
"57692 done at Mozháysk after the battle of Borodinó.\n",
"58038 French had given battle at Borodinó, did not achieve its purpose when it\n",
"58063 enemy in full strength at Borodinó—defeated at Krásnoe and the Berëzina\n",
"58772 activity in 1812, never once swerving by word or deed from Borodinó to\n",
"58819 Beginning with the battle of Borodinó, from which time his disagreement\n",
"58820 with those about him began, he alone said that the battle of Borodinó\n",
"58845 this enemy of decisive action, gave battle at Borodinó, investing the\n",
"58848 contradiction to everyone else, declared till his death that Borodinó\n",
"59762 Borodinó for more than a month had recently died in the Rostóvs house\n",
"60187 one at Borodinó.\n",
"61413 the cold in his head at Borodinó to the sparks which set Moscow on\n"
]
}
],
"source": [
"println(\"print the line numbers and the lines that contain the word Borodinó:\\n\")\n",
"for (i,line) in enumerate(lines)\n",
" if occursin(\"Borodinó\",line)\n",
" println(i,\" \",line)\n",
" end\n",
"end"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Task 3\n",
"\n",
"1. Change Borodinó everywhere to Berëzina and then count the occurances"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change Borodinó everywhere to Berëzina and then count the occurances\n",
"125\n",
"125\n"
]
}
],
"source": [
"println(\"Change Borodinó everywhere to Berëzina and then count the occurances\")\n",
"str2 = replace(str,\"Borodinó\"=>\"Berëzina\");\n",
"words2 = split(str2)\n",
"println(sum(occursin.(\"Berëzina\",words2)))\n",
"\n",
"println(sum(z->occursin(\"Berëzina\",z),words2)) #quicker approach"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"anaconda-cloud": {},
"kernel_info": {
"name": "julia-1.2"
},
"kernelspec": {
"display_name": "Julia 1.7.0",
"language": "julia",
"name": "julia-1.7"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.7.0"
},
"nteract": {
"version": "0.24.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,112 @@
#------------------------------------------------------------------------------
"""
OlsGMFn(Y,X)
LS of Y on X; for one dependent variable, Gauss-Markov assumptions
# Usage
(b,u,Yhat,V,R2) = OlsGMFn(Y,X)
# Input
- `Y::Vector`: T-vector, the dependent variable
- `X::Matrix`: Txk matrix of regressors (including deterministic ones)
# Output
- `b::Vector`: k-vector, regression coefficients
- `u::Vector`: T-vector, residuals Y - yhat
- `Yhat::Vector`: T-vector, fitted values X*b
- `V::Matrix`: kxk matrix, covariance matrix of b
- `R2::Number`: scalar, R2 value
"""
function OlsGMFn(Y,X)
T = size(Y,1)
b = X\Y
Yhat = X*b
u = Y - Yhat
σ2 = var(u)
V = inv(X'X)*σ2
R2 = 1 - σ2/var(Y)
return b, u, Yhat, V, R2
end
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
"""
OlsNWFn(Y,X,m=0)
LS of Y on X; for one dependent variable, using Newey-West covariance matrix
# Usage
(b,u,Yhat,V,R2) = OlsNWFn(Y,X,m)
# Input
- `Y::Array`: Tx1, the dependent variable
- `X::Array`: Txk matrix of regressors (including deterministic ones)
- `m::Int`: scalar, bandwidth in Newey-West
# Output
- `b::Array`: kx1, regression coefficients
- `u::Array`: Tx1, residuals Y - Yhat
- `Yhat::Vector`: Tx1, fitted values X*b
- `V::Array`: kxk matrix, covariance matrix of b
- `R2::Number`: scalar, R2 value
"""
function OlsNWFn(Y,X,m=0)
T = size(Y,1)
b = X\Y
Yhat = X*b
u = Y - Yhat
S = CovNWFn(X.*u,m) #Newey-West covariance matrix
Sxx = X'X
V = inv(Sxx)'S*inv(Sxx) #covariance matrix of b
R2 = 1 - var(u)/var(Y)
return b, u, Yhat, V, R2
end
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
"""
CovNWFn(g0,m=0)
Calculates covariance matrix of sample average.
# Input
- `g0::Matrix`: Txq Matrix of q moment conditions
- `m:int`: scalar, number of lags to use
# Output
- `S::Matrix`: qxq covariance matrix(average g0)
"""
function CovNWFn(g0,m=0)
T = size(g0,1) #g0 is Txq
m = min(m,T-1) #number of lags
g = g0 .- mean(g0,dims=1) #normalizing to zero means
S = g'g #(qxT)*(Txq)
for s = 1:m
Λ_s = g[s+1:T,:]'g[1:T-s,:] #same as Sum[g_t*g_{t-s}',t=s+1,T]
S = S + (1 - s/(m+1))*(Λ_s + Λ_s')
end
return S
end
#------------------------------------------------------------------------------

View File

@ -0,0 +1,104 @@
"""
BuildSTree(S,n,u,d)
Build binomial tree, starting at `S` and having `n` steps with up move `u` and down move `d`
# Output
- `STree:: Vector or vectors`: each (sub-)vector is for a time step. `STree[0] = [S]` and `STree[n]` is for time period n.
"""
function BuildSTree(S,n,u,d)
STree = [fill(NaN,i) for i = 1:n+1] #vector of vectors (of different lengths)
STree = OffsetArray(STree,0:n) #convert so the indices are 0:n
STree[0][1] = S #step 0 is in STree[0], element 1
for i = 1:n #move forward in time
STree[i][1:end-1] = u*STree[i-1] #up move from STree[i-1][1:end]
STree[i][end] = d*STree[i-1][end] #down move from STree[i-1][end]
end
return STree
end
"""
EuOptionPrice(STree,K,y,h,p,isPut=false)
Calculate price of European option from binomial model
# Output
- `Value:: Vector of vectors`: option values at different nodes, same structure as STree
"""
function EuOptionPrice(STree,K,y,h,p,isPut=false) #price of European option
Value = similar(STree) #tree for derivative, to fill
n = length(STree) - 1 #number of steps in STree
if isPut
Value[n] = max.(0,K.-STree[n]) #put, at last time node
else
Value[n] = max.(0,STree[n].-K) #call, at last time node
end
for i = n-1:-1:0 #move backward in time
Value[i] = exp(-y*h)*(p*Value[i+1][1:end-1] + (1-p)*Value[i+1][2:end])
end #p*up + (1-p)*down, discount
return Value
end
"""
AmOptionPrice(STree,K,y,h,p,isPut=false)
Calculate price of American option from binomial model
# Output
- `Value:: Vector of vectors`: option values at different nodes, same structure as STree
- `Exerc::` Vector of vectors`: true if early exercise at the node, same structure as STree
"""
function AmOptionPrice(STree,K,y,h,p,isPut=false) #price of American option
Value = similar(STree) #tree for derivative, to fill
n = length(STree) - 1
Exerc = similar(Value,BitArray) #same structure as STree, but BitArrays, empty
if isPut
Value[n] = max.(0,K.-STree[n]) #put, at last time node
else
Value[n] = max.(0,STree[n].-K) #call, at last time node
end
Exerc[n] = Value[n] .> 0 #exercise
for i = n-1:-1:0 #move backward in time
fa = exp(-y*h)*(p*Value[i+1][1:end-1] + (1-p)*Value[i+1][2:end])
if isPut
Value[i] = max.(K.-STree[i],fa) #put
else
Value[i] = max.(STree[i].-K,fa) #call
end
Exerc[i] = Value[i] .> fa #early exercise
end
return Value, Exerc
end
"""
Φ(x)
Calculate Pr(z<=x) for N(0,1) variable z
"""
function Φ(x)
Pr = cdf(Normal(0,1),x)
return Pr
end
"""
OptionBlackSPs(S,K,m,y,σ,δ=0,PutIt=false)
Calculate Black-Scholes European call or put option price, continuous dividends of δ
"""
function OptionBlackSPs(S,K,m,y,σ,δ=0,PutIt=false)
d1 = ( log(S/K) + (y-δ+0.5*σ^2)*m ) / (σ*sqrt(m))
d2 = d1 - σ*sqrt(m)
c = exp(-δ*m)*S*Φ(d1) - K*exp(-y*m)*Φ(d2)
if PutIt
price = c - exp(-δ*m)*S + exp(-y*m)*K
else
price = c
end
return price
end