


```
average from one sample with p=0.75 2.335

autocorrelations with p=0.75

1 0.266

2 0.099

3 0.034

4 0.004

5 -0.041
```

Task 2

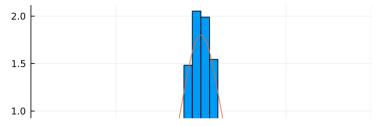
Do a Monte Carlo simulation. Use the parameters $(T, \rho, \sigma, \mu) = (500, 0, 3, 2)$.

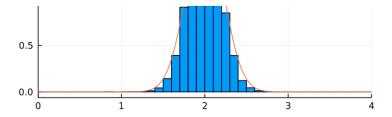
- 1. Generate a sample with T observations and calculate the average. Repeat M=10,000 times and store the estimated averages in a vector of length M. (The rest of the question uses the symbol μ_i to denote the average from sample i.)
- 2. What is average μ_i across the M estimates? (That is, what is $\frac{1}{M} \sum_{i=1}^{M} \mu_i$?) Report the result.
- 3. What is the standard deviation of μ_i across the M estimates? Compare with the theoretical standard deviation (see below). Report the result.
- 4. Does the distribution of μ_i look normal? *Plot* a histogram and compare with the theoretical pdf (see below).

...basic stats (the theoretical results)

says that the sample average of an iid ("independently and identically distributed") data series is normally distributed with a mean equal to the true (population) mean μ and a standard deviation equal to $s = \sigma_y / \sqrt{T}$ where σ_y is the standard deviation of y.

To compare with our simulation results, you could estimate σ_{ν} from a single simulation with very many observations (say 10'000).


• • •


fake results

```
Average across the simulations: 1.998  
Std across the samples (with p=0) and in theory: simulations theory 0.198 0.222
```

. . .

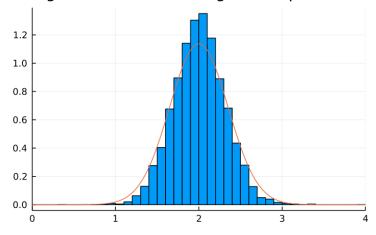
Histogram of 10000 averages with ρ =0, fake

Task 3

Redo task 2, but now use $\rho=0.75$ (the other parameters are unchanged).

•••

fake results


Average across the simulations: 2.005

Std across the samples (with $\rho\text{=0.75})$ and in theory: simulations $% \left(1,0\right) =0.75$ theory

0.308 0.351

. . .

Histogram of 10000 averages with $\rho {=}\, 0.75,\, fa$

Task 4

You decide to test the hypothesis that $\mu=2$. Your decision rule is

• reject the hypothesis if $|(\mu_i - 2)/s| > 1.645$ with $s = \sigma_y / \sqrt{T}$

With this decision rule, you are clearly assuming that the theoretical result (definition of s) is correct.

Estimate both μ_i and σ_y from each sample.

In what fraction of the M simulation do you reject your hypothesis when $\rho=0$ and when $\rho=0.75$? For the other parameters, use $(\tau,\sigma,\mu)=(500,3,2)$ (same as before).

• • •

. . .

fake results

Frequency of rejections: with p=0 with p=0.75 0.043 0.211

• • •

Simple 0 1 4 Julia 1.7.0 | Idle Mode: Command S Ln 1, Col 1 Exam2_fake.ipynb