{ "cells": [ { "cell_type": "markdown", "source": [ "# Basic Julia Tutorial" ], "metadata": { "collapsed": true } }, { "cell_type": "markdown", "source": [ "# Running/Installing Julia\n", "\n", "This is a notebook. To run in you need Julia and jupyter or nteract (see below).\n", "\n", "1. To run Julia without a local installation, use (for instance) [CoCalc](https://cocalc.com).\n", "\n", "2. To install Julia on your machine, [download and install it](https://julialang.org/downloads/). \n", "\n", "3. You may also want to use [VS Code with the Julia extension](https://github.com/julia-vscode/julia-vscode) IDE. See also the [julia-vscode.org](https://www.julia-vscode.org/) for more information.\n", "\n", "4. To run notebooks with either jupyter or nteract from your local installation, see [IJulia](https://github.com/JuliaLang/IJulia.jl) for instructions. See also below for some hints.\n", "\n", "5. As an alternative to jupyter/nteract you can also run notebooks in VS Code (see above).\n", "\n", "\n", "\n", "## More Details on Installing jupyter and nteract\n", "\n", "1. If you want to use nteract do as follows: install IJulia, but do *not* call on `notebook()` to avoid the automatic Python installation. Then install nteract.\n", "\n", "2. After installing IJulia and issuing the command `notebook()` a new local Python installation will be made - unless IJulia finds an existing installation.\n", "\n", "3. If you already have a Python installation, run `ENV[\"JUPYTER\"] = \"C:\\\\Miniconda3\\\\Scripts\\\\jupyter.exe\"` (change the path as needed) before you install IJulia. The best is perhaps to add this to your startup.jl file (~/.julia/config/startup.jl, for instance, C:\\Users\\yourusername\\.julia\\config\\startup.jl if you are on Windows). You can test whether it works by running ```run(`$(ENV[\"JUPYTER\"]) --version`)``` from the Julia REPL.\n", "\n", "4. On Windows, it helps to allow the Python installer to add python to the system path." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Documentation and Help\n", "\n", "1. Cheat sheet at [QuantEcon](https://cheatsheets.quantecon.org/julia-cheatsheet.html)\n", "2. [Wiki book](https://en.wikibooks.org/wiki/Introducing_Julia)\n", "3. [Short tutorials](https://techytok.com/from-zero-to-julia/) \n", "4. [ThinkJulia](https://benlauwens.github.io/ThinkJulia.jl/latest/book.html) is a free on-line book\n", "5. The [official Julia on-line manual](https://docs.julialang.org)\n", "6. Discussion lists are found at\n", " * https://discourse.julialang.org/\n", " * https://stackoverflow.com/questions/tagged/julia-lang\n", " * https://www.reddit.com/r/Julia/\n", " * https://gitter.im/JuliaLang/julia\n", "7. In Julia, do ```? cos``` to get help with the cos function " ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# About Notebooks\n", "\n", "This cell is a \"Markdown\" cell. This is meant for comments and documentation, not computations.\n", "\n", "You can change a cell to \"Code\" or \"Markdown\" in the menu.\n", "\n", "Markdown cells can handle LaTeX. An example: $\\alpha = \\beta/2$. A Markdown cell can also contain some *formatting*, like lists of this kind\n", "\n", "1. To insert a new cell, use the menu. \n", "\n", "2. The next cell is \"Code\". You can run it. Text after a # sign is treated as a comment.\n", "\n", "3. The subsequent cell shows how to get help on a command." ], "metadata": {} }, { "cell_type": "code", "execution_count": 29, "source": [ "a = 2 #this is a comment\n", " #run this cell by using the menu, or by Shift+Enter" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "2" ] }, "metadata": {}, "execution_count": 29 } ], "metadata": {} }, { "cell_type": "code", "execution_count": 30, "source": [ "? cos #to get help on the cos() function" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "search: \u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22m \u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22mh \u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22md \u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22mc \u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22mpi a\u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22m a\u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22mh a\u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22md sin\u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22m sin\u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22md sin\u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22m\u001b[0m\u001b[1ms\u001b[22mpi \u001b[0m\u001b[1mc\u001b[22m\u001b[0m\u001b[1mo\u001b[22mn\u001b[0m\u001b[1ms\u001b[22mt\n", "\n" ] }, { "output_type": "execute_result", "data": { "text/latex": [ "\\begin{verbatim}\n", "cos(x)\n", "\\end{verbatim}\n", "Compute cosine of \\texttt{x}, where \\texttt{x} is in radians.\n", "\n", "See also [\\texttt{cosd}], [\\texttt{cospi}], [\\texttt{sincos}], [\\texttt{cis}].\n", "\n", "\\rule{\\textwidth}{1pt}\n", "\\begin{verbatim}\n", "cos(A::AbstractMatrix)\n", "\\end{verbatim}\n", "Compute the matrix cosine of a square matrix \\texttt{A}.\n", "\n", "If \\texttt{A} is symmetric or Hermitian, its eigendecomposition (\\href{@ref}{\\texttt{eigen}}) is used to compute the cosine. Otherwise, the cosine is determined by calling \\href{@ref}{\\texttt{exp}}.\n", "\n", "\\section{Examples}\n", "\\begin{verbatim}\n", "julia> cos(fill(1.0, (2,2)))\n", "2×2 Matrix{Float64}:\n", " 0.291927 -0.708073\n", " -0.708073 0.291927\n", "\\end{verbatim}\n" ], "text/markdown": [ "```\n", "cos(x)\n", "```\n", "\n", "Compute cosine of `x`, where `x` is in radians.\n", "\n", "See also [`cosd`], [`cospi`], [`sincos`], [`cis`].\n", "\n", "---\n", "\n", "```\n", "cos(A::AbstractMatrix)\n", "```\n", "\n", "Compute the matrix cosine of a square matrix `A`.\n", "\n", "If `A` is symmetric or Hermitian, its eigendecomposition ([`eigen`](@ref)) is used to compute the cosine. Otherwise, the cosine is determined by calling [`exp`](@ref).\n", "\n", "# Examples\n", "\n", "```jldoctest\n", "julia> cos(fill(1.0, (2,2)))\n", "2×2 Matrix{Float64}:\n", " 0.291927 -0.708073\n", " -0.708073 0.291927\n", "```\n" ], "text/plain": [ "\u001b[36m cos(x)\u001b[39m\n", "\n", " Compute cosine of \u001b[36mx\u001b[39m, where \u001b[36mx\u001b[39m is in radians.\n", "\n", " See also [\u001b[36mcosd\u001b[39m], [\u001b[36mcospi\u001b[39m], [\u001b[36msincos\u001b[39m], [\u001b[36mcis\u001b[39m].\n", "\n", " ────────────────────────────────────────────────────────────────────────────\n", "\n", "\u001b[36m cos(A::AbstractMatrix)\u001b[39m\n", "\n", " Compute the matrix cosine of a square matrix \u001b[36mA\u001b[39m.\n", "\n", " If \u001b[36mA\u001b[39m is symmetric or Hermitian, its eigendecomposition (\u001b[36meigen\u001b[39m) is used to\n", " compute the cosine. Otherwise, the cosine is determined by calling \u001b[36mexp\u001b[39m.\n", "\n", "\u001b[1m Examples\u001b[22m\n", "\u001b[1m ≡≡≡≡≡≡≡≡≡≡\u001b[22m\n", "\n", "\u001b[36m julia> cos(fill(1.0, (2,2)))\u001b[39m\n", "\u001b[36m 2×2 Matrix{Float64}:\u001b[39m\n", "\u001b[36m 0.291927 -0.708073\u001b[39m\n", "\u001b[36m -0.708073 0.291927\u001b[39m" ] }, "metadata": {}, "execution_count": 30 } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Load Packages and Extra Functions\n", "\n", "There are many packages for Julia, for instance, for plotting or statistical methods (see [JuliaHub](https://juliahub.com/) for a list). To install a package, you do either \n", "\n", "1. (works everywhere) run `import Pkg` and then `Pkg.add(\"Packagename\")`\n", "\n", "2. (works in the Julia console, REPL) enter the \"package manager mode\" by typing `]`, then run `add PackageName`. You leave the package manager mode by ctrl-c or backspace.\n", "\n", "Once a package is installed, you can use it by running\n", "\n", "```\n", "using PackageName\n", "```" ], "metadata": {} }, { "cell_type": "code", "execution_count": 31, "source": [ "using Printf\n", "\n", "include(\"jlFiles/printmat.jl\") #just a function for prettier matrix printing" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "printyellow (generic function with 1 method)" ] }, "metadata": {}, "execution_count": 31 } ], "metadata": {} }, { "cell_type": "code", "execution_count": 32, "source": [ "using Plots #this loads the Plots package\n", "\n", "#pyplot(size=(600,400)) #choice of plotting backend\n", "gr(size=(480,320))\n", "default(fmt = :svg) #try :png or :svg" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Scalars and Matrices\n", "\n" ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Create a Scalar and a Matrix" ], "metadata": {} }, { "cell_type": "code", "execution_count": 33, "source": [ "q = 1 #create a scalar\n", "Q = [ 1 2 3; #create 2x3 matrix\n", " 4 5 6 ] \n", "println(\"q is a scalar. To print, use println() or printlnPs()\")\n", "println(q)\n", "\n", "println(\"\\nQ is a matrix. To print, use display() or printmat()\")\n", "printmat(Q) #case sensitive (q and Q are different)\n", " #the \\n adds a line break" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "q is a scalar. To print, use println() or printlnPs()\n", "1\n", "\n", "Q is a matrix. To print, use display() or printmat()\n", " 1 2 3 \n", " 4 5 6 \n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Picking Out Parts of a Matrix" ], "metadata": {} }, { "cell_type": "code", "execution_count": 34, "source": [ "println(\"\\n\",\"element [1,2] of Q: \", #commands continue on\n", " Q[1,2]) #the next line (until finished)\n", "\n", "println(\"\\ncolumns 2 and 3 of Q: \")\n", "printmat(Q[:,2:3])\n", "\n", "println(\"\\nline 1 of Q (as a vector): \")\n", "printmat(Q[1,:])" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "element [1,2] of Q: 2\n", "\n", "columns 2 and 3 of Q: \n", " 2 3 \n", " 5 6 \n", "\n", "\n", "line 1 of Q (as a vector): \n", " 1 \n", " 2 \n", " 3 \n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Basic Linear Algebra\n", "\n", "The syntax for linear algebra is similar to the standard text book approach. For instance, \n", "* `Q'Q` (or `Q'*Q`) multiplies the transpose ($Q'$) with the matrix ($Q$)\n", "* `A*B` does matrix multiplication\n", "* `100*Q` multiplies each element of the matrix ($Q$) by 100. (You can also do `100Q`.)\n", "\n", "However, to add a scalar to each element of a matrix, use `100 .+ Q`. Notice the dot." ], "metadata": {} }, { "cell_type": "code", "execution_count": 35, "source": [ "println(\"transpose of Q:\")\n", "printmat(Q')\n", "\n", "println(\"Q'Q:\")\n", "printmat(Q'Q)\n", "\n", "println(\"scalar * matrix:\")\n", "printmat(100*Q)\n", "\n", "println(\"scalar .+ matrix:\") #notice the dot\n", "printmat(100 .+ Q)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "transpose of Q:\n", " 1 4 \n", " 2 5 \n", " 3 6 \n", "\n", "Q'Q:\n", " 17 22 27 \n", " 22 29 36 \n", " 27 36 45 \n", "\n", "scalar * matrix:\n", " 100 200 300 \n", " 400 500 600 \n", "\n", "scalar .+ matrix:\n", " 101 102 103 \n", " 104 105 106 \n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Creating a Sequence and a Vector" ], "metadata": {} }, { "cell_type": "code", "execution_count": 36, "source": [ "θ = 1:10:21 #a range, type \\theta[TAB] to get this symbol\n", "println(\"\\n\",\"θ is a sequence: \",θ)\n", "\n", "ρ = collect(θ) #make the sequence into a vector, \\rho[TAB]\n", "println(\"\\n\",\"ρ is a vector: \")\n", "printmat(ρ)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "θ is a sequence: 1:10:21\n", "\n", "ρ is a vector: \n", " 1 \n", " 11 \n", " 21 \n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Comparing Things\n", "\n", "To see if the scalar z <= 0, do \n", "```\n", "vv = z <= 0\n", "```\n", "to get a single output (true or false).\n", "\n", "Instead, if x is an array, do \n", "```\n", "vv = x .<= 0 #notice the dot.\n", "```\n", "to get an array of outputs (same dimension as x)" ], "metadata": {} }, { "cell_type": "code", "execution_count": 37, "source": [ "x = [-1.5,-1.0,-0.5,0,0.5] #this is a vector\n", "\n", "println(\"x values: \")\n", "printmat(x)\n", "\n", "vv = -1 .< x .<= 0 #true for x values (-1,0], vv is a vector\n", "println(\"true if x is in (-1,0]: \")\n", "printmat(vv)\n", "\n", "x2 = x[vv] #x values for which vv==true\n", "println(\"x values that are in (-1,0]: \")\n", "printmat(x2)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "x values: \n", " -1.500\n", " -1.000\n", " -0.500\n", " 0.000\n", " 0.500\n", "\n", "true if x is in (-1,0]: \n", " 0 \n", " 0 \n", " 1 \n", " 1 \n", " 0 \n", "\n", "x values that are in (-1,0]: \n", " -0.500\n", " 0.000\n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Finding Things\n", "\n", "can be done by, for instance, `findfirst()`, `findall()` and `indexin()`. \n", "\n", "Instead, if you just need to check if the number `z` is in an array (or any collection) `x`, then use `in(z,x)`." ], "metadata": {} }, { "cell_type": "code", "execution_count": 38, "source": [ "x = [-1.5,-1.0,-0.5,0,0.5] #this is a vector\n", "\n", "println(\"x values: \")\n", "printmat(x)\n", "\n", "v1 = findfirst(x.==0)\n", "println(\"(first) index v in x such x[v]==0: \",v1)\n", "\n", "v2 = findall(x.>=0)\n", "println(\"\\nall indices v in x such x[v]>=0: \")\n", "printmat(v2)\n", "\n", "y = [-1.0,0]\n", "v3 = indexin(y,x)\n", "println(\"\\nindices in x so that x[v] equals the vector y=$y: \")\n", "printmat(v3)\n", "\n", "v4 = in(0,x)\n", "println(\"\\ntesting if 0 is in x: \",v4)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "x values: \n", " -1.500\n", " -1.000\n", " -0.500\n", " 0.000\n", " 0.500\n", "\n", "(first) index v in x such x[v]==0: 4\n", "\n", "all indices v in x such x[v]>=0: \n", " 4 \n", " 5 \n", "\n", "\n", "indices in x so that x[v] equals the vector y=[-1.0, 0.0]: \n", " 2 \n", " 4 \n", "\n", "\n", "testing if 0 is in x: true\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# if-else\n", "\n", "allows you to run different comman ddepending on a condition which you specify.\n", "\n", "(extra) There are also other (more compact) possibilities for `if-else` case\n", "\n", "1. `y = ifelse(z <= 2,z,2)` or \n", "2. `z <= 2 ? y = z : y = 2`\n", "(In this partcular case, `y=minimum(z,2)` also works.)\n", "\n", "You can also insert an `ifelse` command." ], "metadata": {} }, { "cell_type": "code", "execution_count": 39, "source": [ "z = 1.05\n", "\n", "if z <= 2 #(a) if true, run the next command (y=z) and then jump to end\n", " y = z\n", "else #(b) if (a) is false, do this instead\n", " y = 2\n", "end\n", "\n", "#y = ifelse(z <= 2,z,2) #these two versions also work\n", "#z <= 2 ? y = z : y = 2\n", "\n", "println(y)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1.05\n" ] } ], "metadata": {} }, { "cell_type": "code", "execution_count": 40, "source": [ "if z < 1 #(a) if true, run the next command (y=1) and then jump to end\n", " y = 1\n", "elseif 1 <= z <= 2 #(b) if (a) is false, try this instead \n", " y = z\n", "else #(c) if also (b) is false, do this\n", " y = 2\n", "end\n", "\n", "println(y)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1.05\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Loops\n", "\n", "The are two types of loops: \"for loops\" and \"while loops\". \n", "\n", "The *for loop* is best when you know how many times you want to loop (for instance, over all $m$ rows in a matrix). \n", "\n", "The *while loop* is best when you want to keep looping until something happens, for instance, that $x_0$ and $x_1$ get really close.\n", "\n", "The default behaviour in *IJulia*, *inside functions* and at the *REPL* promt is that assignments of `x` inside the loop overwrites `x` defined before the loop. To get the same behavior in scripts, you need to add `global x` somewhere inside the loop.\n", "\n", "To make sure that the `y` calculated inside the loop does not affect `y` outside the loop, add `local y`.\n", "\n", "A variable (here `z2`) that does not exist before the loop is local to the loop." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### A Simple \"for loop\"\n", "\n", "The \"for loop\" in the next cell makes 3 iterations and changes a global $x$ variable." ], "metadata": {} }, { "cell_type": "code", "execution_count": 41, "source": [ "x = 0\n", "y = -999\n", "for i = 3:3:9 #or `i in 3:3:9`, or `v=[3,6,9]; i in v`\n", " #global x #only needed in script\n", " local y #don't overwrite y outside loop\n", " x = x + i #adding i to the \"old\" x\n", " y = i\n", " z2 = -998 #notice: z2 has not been used before \n", " println(\"i=$i, x=$x and z2=$z2\") #$x prints the value of x\n", "end\n", "\n", "println(\"\\nAfter loop: x=$x and y=$y\")\n", "#println(z2) #does not work: z2 is local to the loop" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "i=3, x=3 and z2=-998\n", "i=6, x=9 and z2=-998\n", "i=9, x=18 and z2=-998\n", "\n", "After loop: x=18 and y=-999\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "### A Double \"for loop\"\n", "\n", "An example of a nested for for loop\n", "\n", "```\n", "for j = 1:n, i = 1:m\n", " #do something\n", "end\n", "```\n", "\n", "If you prefer, could also write a longer version to do the same thing\n", "```\n", "for j = 1:n \n", " for i = 1:m\n", " #do something\n", " end \n", "end\n", "```\n", "\n", "The next cell uses a double loop to fill a matrix. " ], "metadata": {} }, { "cell_type": "code", "execution_count": 42, "source": [ "(m,n) = (4,3) #same as m=4;n=3\n", "x = fill(-999,(m,n)) #to put results in, initialized as -999\n", "for i = 1:m, j = 1:n\n", " x[i,j] = 10*i + j\n", "end\n", "\n", "println(\"new x matrix: \\n\")\n", "printmat(x)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "new x matrix: \n", "\n", " 11 12 13 \n", " 21 22 23 \n", " 31 32 33 \n", " 41 42 43 \n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## A Simple \"while loop\"\n", "\n", "The \"while loop\" in the next cell iterates until two variables ($x_0$ and $x_1$) get close.\n", "\n", "The background to the example is that we want to solve a function $f(x)=x^2$ for the $x$ value that makes $f(x)=2$. The Newton-Raphson algorithm starts with a value $x_0$ and updates it to\n", "$\n", "x_1 = x_0 + (2-f(x_0))/f'(x_0)\n", "$\n", "where $f'(x_0)$ is the derivative of $f()$ evaluated at $x_0$. The algorithm iterates until $x_0$ and $x_1$ are close. Clearly, we are trying to find the square root of 2." ], "metadata": {} }, { "cell_type": "code", "execution_count": 43, "source": [ "println(\"Solving x^2 = 2 with Newton-Raphson:\\n\")\n", "\n", "x₀ = Inf #x\\_0[TAB]\n", "x₁ = 10\n", "\n", "while abs(x₁-x₀) > 0.001 #keep going until they get similar\n", " #global x₀, x₁ #only needed in script\n", " local y, dy #don't overwrite any y,dy outside loop\n", " x₀ = x₁ #initial guess is taken from old guess\n", " y = x₀^2 #value of function\n", " dy = 2*x₀ #derivative of function\n", " x₁ = x₀ + (2 - y)/dy #updating the guess, Newton-Raphson\n", " printlnPs(x₀,\" is changed to \",x₁)\n", "end\n", "\n", "printlnPs(\"\\nThe result should be close to \",sqrt(2))" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Solving x^2 = 2 with Newton-Raphson:\n", "\n", " 10 is changed to 5.100\n", " 5.100 is changed to 2.746\n", " 2.746 is changed to 1.737\n", " 1.737 is changed to 1.444\n", " 1.444 is changed to 1.415\n", " 1.415 is changed to 1.414\n", "\n", "The result should be close to 1.414\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# A Simple Function\n", "\n", "The next cell defines a new function, `fn1()`. It takes a scalar input (`x`) and returns a scalar output (`y`).\n", "\n", "If you instead use a vector as the input, then the computation fails. (The reason is that you cannot do x^2 on a vector. You could on a square matrix, though.)\n", "\n", "However, using the \"dot\" syntax\n", "```\n", "y = fn1.(x)\n", "```\n", "gives an array as output where element `y[i,j] = fn1(x[i,j])`." ], "metadata": {} }, { "cell_type": "code", "execution_count": 44, "source": [ "function fn1(x) #define a new function \n", " y = (x-1.1)^2 - 0.5\n", " return y\n", "end" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "fn1 (generic function with 1 method)" ] }, "metadata": {}, "execution_count": 44 } ], "metadata": {} }, { "cell_type": "code", "execution_count": 45, "source": [ "y = fn1(1.5)\n", "printlnPs(\"result from fn1(1.5): \",y)\n", "\n", "x = [1;1.5]\n", "#y = fn1(x) #would give an error \n", "y = fn1.(x) #calling on the function, dot. to do for each element in x\n", "printlnPs(\"\\nresult from fn1.(x): \")\n", "printmat(y)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "result from fn1(1.5): -0.340\n", "\n", "result from fn1.(x): \n", " -0.490\n", " -0.340\n", "\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# A First Plot\n", "\n", "With the Plots package you create a a simple plot like this:\n", "\n", "1. Plot two curve by using the `plot([x1 x2],[y1 y2])` command\n", "2. Configure curves by `linecolor =`, `linestyle =` etc\n", "2. Add titles and labels by `title = `, `xlabel = `, etc\n", "\n", "Notice: the *first plot is slow*." ], "metadata": {} }, { "cell_type": "code", "execution_count": 46, "source": [ "x = -3:6/99:6 \n", "\n", "p1 = plot( [x x],[fn1.(x) cos.(x)],\n", " linecolor = [:red :blue],\n", " linestyle = [:solid :dash],\n", " linewidth = [2 1],\n", " label = [\"fn1()\" \"cos\"],\n", " title = \"My Results\",\n", " xlabel = \"x\",\n", " ylabel = \"my output value\" )\n", "\n", "#display(p1) #not needed in notebook, but useful in script" ], "outputs": [ { "output_type": "execute_result", "data": { "image/svg+xml": "\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n \n \n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, "metadata": {}, "execution_count": 46 } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Types: Integers, Floats, Bools and Others\n", "\n", "Julia has many different types of variables: signed integers (like 2 or -5), floating point numbers (2.0 and -5.1), bools (false/true), bitarrays (similar to bools, but with more efficient use of memory), strings (\"hello\"), Dates (2017-04-23) and many more types." ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## Integers and Floats" ], "metadata": {} }, { "cell_type": "code", "execution_count": 47, "source": [ "a = 2 #integer, Int (Int64 on most machines)\n", "b = 2.0 #floating point, (Float64 on most machines)\n", "A = [1,2]\n", "B = [1.0,2.0]\n", "\n", "println(\"Finding the type of a, b, A and B:\")\n", "println(typeof(a),\" \",typeof(b),\" \",typeof(A),\" \",typeof(B))" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Finding the type of a, b, A and B:\n", "Int64 Float64 Vector{Int64} Vector{Float64}\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## Bools and BitArrays\n", "\n", "Bools are \"true\" or \"false\". BitArrays are (more memory efficient) versions of this." ], "metadata": {} }, { "cell_type": "code", "execution_count": 48, "source": [ "c = 2 > 1.1\n", "C = A .> 1.5 #A is an array, so C is too\n", "\n", "println(\"Finding the type of c and C:\")\n", "println(typeof(c),\" \",typeof(C))" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Finding the type of c and C:\n", "Bool BitVector\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "## Calculations with Mixed Types\n", "\n", "A calculation like \"integer\" + \"float\" works and the type of the result will be a float (the more flexible type). Similarly, \"bool\" + \"integer\" will give an integer. These promotion rules make it easy to have mixed types in calculations, and also provide a simple way of converting a variable from one type to another. (There are also an explicit convert() function that might be quicker.)" ], "metadata": {} }, { "cell_type": "code", "execution_count": 49, "source": [ "println(1+2.0) #integer + Float\n", "println((1>0) + 2) #bool + integer" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "3.0\n", "3\n" ] } ], "metadata": {} }, { "cell_type": "code", "execution_count": 50, "source": [ "1 > 2" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "false" ] }, "metadata": {}, "execution_count": 50 } ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} } ], "metadata": { "@webio": { "lastCommId": null, "lastKernelId": null }, "anaconda-cloud": {}, "kernelspec": { "display_name": "Julia 1.7.0-rc1", "language": "julia", "name": "julia-1.7" }, "language_info": { "file_extension": ".jl", "name": "julia", "mimetype": "application/julia", "version": "1.7.0" } }, "nbformat": 4, "nbformat_minor": 1 }