HSG-MCS-HS21_Julia/JuliaTutorial-master/Tutorial_06c_ArrayFunctions.ipynb
2021-11-15 21:14:51 +01:00

306 lines
7.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Functions of Arrays\n",
"\n",
"This notebook illustrates how to apply a function to arrays. Another notebook focuses on matrix algebra."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Packages and Extra Functions"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"printyellow (generic function with 1 method)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"using Printf\n",
"\n",
"include(\"jlFiles/printmat.jl\") #a function for prettier matrix printing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Elementwise Functions of Arrays: Using Dot (.)\n",
"\n",
"Let `X` be an array, and `a` and `b` be scalars. Then, `y = fn.(X,a,b)` generates an array `y` where `y[i,j] = fn(X[i,j],a,b)`\n",
"\n",
"(You could achieve the same thing with ```map(xi->fn(xi,a,b),x)```.)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"fn (generic function with 1 method)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fn(x,a,b) = a/x + b #x has to be a scalar for this to work"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 110.000 60.000\n",
" Inf 20.000\n",
"\n"
]
}
],
"source": [
"X = [1 2;\n",
" 0 10]\n",
"\n",
"printmat(fn.(X,100,10)) #notice the dot."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Looping over Columns or Rows\n",
"\n",
"Suppose you want to calculate the sum of each row of a matrix. The classical way of doing that is to loop and extract each row as `X[i,:]`\n",
"\n",
"Notice that instead of `sum(X[:,i])` it may be faster and save memory to do `sum(view(X,i,:))` because this avoids creating a new array of `X[:,i]`.\n",
"\n",
"Also, there is a direct way to loop over all rows by using `for r in eachrow(X)`. To also get the row number `i`, we use `for (i,row) in enumerate(eachrow(X))`. For looping over columns, use `eachcol()`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"X:\n",
" 1 2 \n",
" 0 10 \n",
"\n",
"sum of each row:\n",
" 3.000\n",
" 10.000\n",
"\n"
]
}
],
"source": [
"X = [1 2;\n",
" 0 10]\n",
"println(\"X:\")\n",
"printmat(X)\n",
"\n",
"m = size(X,1)\n",
"\n",
"z = zeros(m) #to fill with results, could here use zeros(Int,m)\n",
"for i = 1:m #loop over rows\n",
" z[i] = sum(X[i,:]) #or sum(view(X,i,:)) to save memory\n",
"end\n",
"println(\"sum of each row:\")\n",
"printmat(z)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sum of each row:\n",
" 3.000\n",
" 10.000\n",
"\n"
]
}
],
"source": [
"z = zeros(m) \n",
"for (i,row) in enumerate(eachrow(X)) #enumerate to get both index and value\n",
" z[i] = sum(row)\n",
"end\n",
"println(\"sum of each row:\")\n",
"printmat(z)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Functions with Built-in `dims` Argument\n",
"\n",
"May functions have a `dims` argument that allows you to avoid looping, for instance, `sum`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 3 \n",
" 10 \n",
"\n"
]
}
],
"source": [
"printmat(sum(X,dims=2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Functions with Built-in `function` and `dims` Arguments (extra)\n",
"\n",
"Several functions allow you to also apply an elementwise function to `X` before doing the rest of the calculations, for instance, `any`, `all`, `sum`, `prod`, `maximum`, and `minimum`."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2×1 Matrix{Int64}:\n",
" 5\n",
" 100"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(abs2,X,dims=2) #same as sum(abs2.(X),dims=2) but faster"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Apply Your Own Function on Each Column: mapslices (extra)\n",
"\n",
"...or each row (or some other dimension)\n",
"\n",
"The `mapslices(fun,x,dims=1)` applies `fun(x[:,i])` to each column of a matrix `x`. This is an alternative to looping over the columns.\n",
"\n",
"The cell below illustrates this by calling a function which calculates the moving average of `x[t]` and `x[t-1]` for each column of a matrix `X`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" X (with 2 columns) and Y (MA(1) of X):\n",
" 1.000 101.000 NaN NaN\n",
" 2.000 102.000 1.500 101.500\n",
" 3.000 103.000 2.500 102.500\n",
" 4.000 104.000 3.500 103.500\n",
" 5.000 105.000 4.500 104.500\n",
"\n"
]
}
],
"source": [
"function MovingAvg2(x) #moving average of t and t-1\n",
" T = length(x)\n",
" y = fill(NaN,T)\n",
" for t = 2:T\n",
" y[t] = (x[t] + x[t-1])/2\n",
" end\n",
" return y\n",
"end\n",
"\n",
"X = [1:5 101:105]\n",
"Y = mapslices(MovingAvg2,X,dims=1)\n",
"println(\" X (with 2 columns) and Y (MA(1) of X):\")\n",
"printmat([X Y])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"@webio": {
"lastCommId": null,
"lastKernelId": null
},
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Julia 1.6.1",
"language": "julia",
"name": "julia-1.6"
},
"language_info": {
"file_extension": ".jl",
"mimetype": "application/julia",
"name": "julia",
"version": "1.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}